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ON ASYMPTOTIC OF EXTREMES FROM GENERALIZED
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Abstract. In this paper, with optimal normalized constants, the asymp-

totic expansions of the distribution and density of the normalized maxima
from generalized Maxwell distribution are derived. For the distributional

expansion, it shows that the convergence rate of the normalized maxima
to the Gumbel extreme value distribution is proportional to 1/ logn. For

the density expansion, on the one hand, the main result is applied to es-

tablish the convergence rate of the density of extreme to its limit. On the
other hand, the main result is applied to obtain the asymptotic expansion

of the moment of maximum.

1. Introduction

Let (Xn, n ≥ 1) be a sequence of independent and identically distributed
(iid) random variables with common cumulative distribution function (cdf)
Fk which obeying the generalized Maxwell distribution (denoted by Fk ∼
GMD(k)). Let Mn = max(Xk, 1 ≤ k ≤ n) denote the partial maximum
of (Xn, n ≥ 1).

As the generalization of the classic Maxwell distribution, the generalized
Maxwell distribution was introduced by Vodă[16]. The probability density
function (pdf) of GMD(k) is given by

fk(x) =
k

21/(2k)σ2+1/kΓ(1 + 1/(2k))
x2k exp

(
−x

2k

2σ2

)
, x > 0,

Received June 23, 2016; Revised March 5, 2018; Accepted March 27, 2018.
2010 Mathematics Subject Classification. Primary 62E20, 60G70; Secondary 60F15,

60F05.
Key words and phrases. density, expansion, extreme value distribution, generalized

Maxwell distribution, moment.
This work was supported by Natural Science Foundation of China [No. 61673015,

61273020, 11661084], Fundamental Research Funds for the Central Universities [No.

XDJK2015A007, SWU1809002], Science Computing and Intelligent Information Processing
of GuangXi higher education key laboratory [No. GXSCIIP201702], Science and Technol-

ogy Plan Project of Guizhou Province [No. LH[2015]7053, No. LH[2015]7055], Science and

Technology Foundation of Guizhou Province [Qian ke he Ji Chu [2016]1161], and Guizhou
province natural science foundation in China (Qian Jiao He KY [2016]255).

c©2018 Korean Mathematical Society

679



680 J. HUANG AND J. WANG

where k, σ is positive and Γ(·) represents the Gamma function. For k = 1,
GMD(1) reduces to the classic Maxwell distribution.

Recently, several properties associated with GMD(k) have been investigated
in the literature. Huang and Chen [4] established the Mills inequality, the
Mills type ratio and distributional tail representation of GMD(k), and showed
that Fk belongs to the domain of attraction Λ of the Gumbel extreme value
distribution, i.e., there exist normalizing constants an > 0 and bn ∈ R, such
that

lim
n→∞

P ((Mn − bn)/an ≤ x) = lim
n→∞

Fnk (anx+ bn)

= Λ(x),

where Λ(x) = exp{−e−x}. Liu and Liu [9] established the uniform convergence
rate of normalized maxima for GMD(1), i.e., the classic Maxwell distribution
(MD for short). Kumar and Chandra [6] developed Sequential probability ra-
tio test for testing the hypothesis concerning the parameter of the GMD(k).
Plucińska [14] considered the properties of Hermite polynomials from sample
having GMD(k), which have applications in various statistical problems con-
nected with expansions in series.

Besides, the generalized Maxwell distribution has recently been a popular
model in Chemical Engineering Science, Engineering Technology and Physics
and other fields, for example, as model for computing fluid flows using the
lattice Boltzmann method and deriving a different class of multiple relaxation-
time LB models (see [2]), the diffusion of mixtures of hydrocarbons in zeolites
(see [5]), polymorphic friction simulation and compensation and quick simula-
tion and control purposes, being both easy to implement and of high fidelity
(see [1]), control purpose, based on a physically motivated friction model, i.e.,
a generic friction model which simulates the contact physics at asperity level
(see [7]) and so forth.

The aim of this paper is to establish the asymptotic expansion for the dis-
tribution and density of normalized maxima of GMD(k) random variables.
As byproduct, we derive the high-order expansion of the moment of extreme.
The uniform convergence rates and asymptotic expansions of the distribution
and density of normalized Mn, the maximum of independent and identically
distributed random variables for some given cdf F , have been of considerable
interest. Hall [3] derived optimal rates of uniform convergence for the cdf of Mn

as F follows the standard normal cdf. Nair [10] obtained asymptotic expansions
for the distribution and moments of Mn as F is the standard normal cdf. Omey
[11] gave the rate of convergence for the density of normalized sample maxima
to the appropriate limit density. Peng et al. [13] established optimal uniform
convergence rates for the cdf of Mn as F obeys the general error distribution.
For other related works, see [8] and [12].

In order to gain the asymptotic expansions of normalized maxima from
GMD(k), we cite some results from [4]. They gave the Mills type ratio of
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GMD(k) as follows: for k > 0,

1− Fk(x)

fk(x)
∼ σ2

k
x1−2k as x→∞.(1.1)

It also follows from [4] that

1− Fk(x) = c(x) exp

(
−
∫ x

1

g(t)

f(t)
dt

)
(1.2)

for large x, where

c(x)→
exp

(
−1/(2σ2)

)
21/(2k)σ1/kΓ(1 + 1/(2k))

as x→∞,

f(x) = k−1σ2x1−2k,

g(x) = 1− k−1σ2x−2k.(1.3)

Note that f ′(x)→ 0 and g(x)→ 1 as x→∞ and we can choose the appropriate
normalizing constants an and bn in such way that bn satisfies the equation

1− Fk(bn) = n−1(1.4)

with

an = f(bn) = k−1σ2b1−2kn(1.5)

such that

lim
n→∞

Fnk (anx+ bn) = Λ(x).

The remainder of this paper is organized as follows. Section 2 gives the main
result on asymptotic expansions for the distribution, density and moment of
partial maxima of the GMD(k). Some auxiliary lemmas needed to prove the
main results and related proofs including the proofs of main results are given
in Section 3.

2. Main results

Next, we derive an asymptotic expansion for the distribution of normalized
maxima from the GMD(k). The distributional expansion could be used to show
that the convergence rate of Mn to the Gumbel extreme value distribution is
of the order of O((log n)−1).

Theorem 2.1. Let Fk(x) represent the cdf of GMD(k). For normalizing con-
stants an and bn given, respectively, by (1.4) and (1.5), we have

b2kn
[
b2kn (Fnk (anx+bn)−Λ(x))−lk(x)Λ(x)

]
→
(
wk(x)+

l2k(x)

2

)
Λ(x) as n→∞,

where lk(x) and wk(x) are, respectively, given by

lk(x) = k−1σ2

[
(2k − 1)x2 − 2x

]
e−x/2
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and

wk(x) = −k−2σ4

[
3(2k − 1)2x4 − 4(2k + 1)(2k − 1)x3 + 24x2 − 48kx

]
e−x/24.

Remark 2.1. By the definition of bn, it is easy to check that b−2kn = O(1/ log n).
Hence, Theorem 2.1 shows that the convergence rate of Fnk (anx+ bn) tending
to its extreme value limit is proportional to 1/ log n. Further, the convergence
rate of b2kn (Fnk (anx + bn) − Λ(x)) tending to its limit is also proportional to
1/ log n.

Remark 2.2. As mentioned in the Introduction, we get classic Maxwell pdf
when k = 1, and then Theorem 2.1 shows also that the asymptotic expansion
of the distribution of normalized maximum from classic Maxwell distribution
is

b̄2n
[
b̄2n
(
Fn1 (ānx+b̄n)−Λ(x)

)
−l1(x)Λ(x)

]
→
(
w1(x)+

l21(x)

2

)
Λ(x) as n→∞,

with normalizing constants ān and b̄n determined by

1− F1(b̄n) = n−1 and ān = σ2b̄−1n ,

where l1(x) and w1(x) are, respectively, given by

l1(x) =
1

2
σ2(x2 − 2x)e−x

and

w1(x) = −1

8
σ4
(
x4 − 4x3 + 8x2 − 16x

)
e−x.

In the sequel, provided

βn(x) =
dFnk (anx+ bn)

dx
= nanF

n−1
k (anx+ bn)fk(anx+ bn)

stand for the distribution density of (Mn − bn)/an, and

Θn(βn,Λ
′;x) = βn(x)− Λ′(x).

By using [15, Proposition 2.5], we have Θn(βn,Λ
′;x)→ 0 as n→∞.

In the following, we show the high-order expansion of density of maxima
from the GMD(k) and its application to the asymptotic of the moments of
maximum.

Theorem 2.2. Let Fk(x) denote the cdf of GMD(k). Then with the normal-
izing constants an and bn defined by (1.4) and (1.5), we have

b2kn
(
b2kn
(
Fnk (anx+ bn)− Λ(x)

)′ − P (x)Λ
′
(x)
)
→ Q(x)Λ

′
(x) as n→∞,(2.1)

where P (x) and Q(x) are respectively determined by

P (x)=k−1σ2

(
1

2

(
(2k−1)x2 − 2x

)
e−x+

(
−1

2
(2k−1)x2+(2k−3)x−1

))
(2.2)
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and

Q(x) =
1

8
k−2σ4

(
(2k − 1)x2 − 2x

)2
e−2x

− 1

24
k−2σ4

(
9(2k − 1)2x4 − 16(2k − 1)(2k + 1)x3

+6(12k + 1)x2 − 24(k + 1)x
)
e−x

+ k−2σ4

(
1

8
(2k − 1)2x4 − 1

3
(2k − 1)(4k − 1)x3(2.3)

+
1

2
(4k2 + 1)x2 − 2kx+ 2k

)
.

Noting that b−2kn ∼ 1/(2σ2 log n), it follows Theorem 2.2 that we easily get
the rate of convergence of the density of maxima to its limit below.

Corollary 2.1. Let an and bn be given by (1.4) and (1.5) and for x > 0. Then

(Fnk (anx+ bn))′ − Λ′(x) ∼ e−xΛ(x)P (x)

2σ2 log n

for large n.

Remark 2.3. When the parameter k = 1, i.e., the classic Maxwell case, we
obtain the associated expansion of density for normalized maxima.

Remark 2.4. Since b−2kn ∼ 1/(2σ2 log n), by Theorem 2.2, we could obtain the

convergence speed of b2kn
(
Fnk (anx+ bn)− Λ(x)

)′
converging to its appropriate

limit is proportional to 1/ log n.

In the end of the section, we utilize the asymptotic expansion of density to
obtain the high-order expansion of the moment of normalized maxima.

In the sequel, for r > 0 let

mr(n) = E

(
Mn − bn

an

)r
=

∫ +∞

−∞
xrβn(x) dx

and

mr = EXr =

∫ +∞

−∞
xrΛ′(x) dx

respectively represent the rth moments of (Mn − bn)/an and X ∼ Λ(x) =
exp(− exp(−x)), and the norming constants an and bn are defined by (1.4) and
(1.5).

Theorem 2.3. For k > 1
2 , we have

b2kn
(
b2kn (mr(n)−mr) + 2−1k−1σ2r ((2k − 1)mr+1 − 2mr)

)
→ − rk−2σ4

{(
−1

8
(2k − 1)2(r + 3) +

1

3
(k − 1)(2k − 1)

)
mr+2
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+
1

2
((2k − 1)(r + 2)− 1)mr+1 +

(
2k − 1

2
(r + 1)

)
mr

}
as n→∞,

where the normalizing constants an and bn are defined by (1.4) and (1.5).

Remark 2.5. For the case of k = 1, i.e., the classic Maxwell distribution case,
the corresponding result is stated as follow:

b̄2n

[
b̄2n(mr(n)−mr) + 2−1rσ2(mr+1 − 2mr)

]
→ rσ4

[
2−1(r − 3)mr − 2−1(r + 1)mr+1 + 8−1(r + 3)mr+2

]
as n→∞,

where the normalizing constants ān and b̄n are determined by Remark 2.2.

3. Auxiliary results and related proofs

In order to obtain expansions for the distribution of the normalized extreme
of GMD(k) random variables, we provide the following distributional tail de-
composition of GMD(k).

Lemma 3.1. Let Fk(x) represent the cdf of GMD(k). For large x, we have

1− Fk(x) = fk(x)
σ2

k
x1−2k

(
1 + k−1σ2x−2k + k−2(1− 2k)σ4x−4k +O(x−6k)

)
=

exp(−1/(2σ2))

21/(2k)σ1/kΓ(1 + 1/(2k))

(
1 + k−1σ2x−2k + k−2(1− 2k)σ4x−4k

+O(x−6k)
)

exp

(
−
∫ x

1

g(t)

f(t)
dt

)
(3.1)

with f(t) and g(t) given by (1.3).

Proof. By integration by parts, we have

1−Fk(x) = fk(x)σ
2

k x
1−2k

(
1 + σ2

k x
−2k + (1−2k)σ4

k2 x−4k + (1−2k)(1−4k)σ6

k3 x−6k
)

+
(1− 2k)(1− 4k)(1− 6k)

21/(2k)k3σ1/k−6Γ(1 + 1/(2k))

∫ ∞
x

t−6k exp

(
− t2k

2σ2

)
dt.(3.2)

It is easy to show by utilizing L’Hospital’s rule that

lim
x→∞

∫∞
x
t−6k exp(− t2k

2σ2 ) dt

x1−6k exp(− x2k

2σ2 )
= 0.(3.3)

Thus, by (1.1), (1.2), (3.2) and (3.3), for large x, we can have

1− Fk(x) = fk(x)
σ2

k
x1−2k

(
1 +

σ2

k
x−2k +

(1− 2k)σ4

k2
x−4k +O(x−6k)

)
=

exp(− 1
2σ2 )

2
1
2k σ

1
k Γ(1 + 1

2k )

(
1 +

σ2

k
x−2k +

(1− 2k)σ4

k2
x−4k
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+O(x−6k)

)
exp

(
−
∫ x

1

g(t)

f(t)
dt

)
.

The desired result follows. �

In order to prove Theorem 2.1, the following auxiliary result is needed.

Lemma 3.2. Let vk(bn;x) = n logFk(anx + bn) + e−x. For normalizing con-
stants an and bn given, respectively, by (1.4) and (1.5), we have

lim
n→∞

b2kn
[
b2kn vk(bn;x)− lk(x)

]
= wk(x),(3.4)

where lk(x) and wk(x) are given by Theorem 2.1.

Proof. Obviously, bn → ∞ if and only if n → ∞ since 1 − Fk(bn) = n−1. The
following facts can be gained by (1.1):

lim
n→∞

1− Fk(anx+ bn)

n−1
= e−x(3.5)

and

lim
n→∞

1− Fk(anx+ bn)

b−2jn

= 0, j = 1, 2.(3.6)

Set

Bk(n, x) =
1 + σ2

k b
−2k
n + (1−2k)σ4

k2 b−4kn +O(b−6kn )

1+ σ2

k (anx+ bn)−2k+ (1−2k)σ4

k2 (anx+ bn)−4k+O ((anx+ bn)−6k)
.

It is easy to check that limn→∞Bk(n, x) = 1 and

Bk(n, x)−1=

(
2σ4

k b−4kn x−σ
6

k2 ((2k+1)x2−4(1−2k)x)b−6kn x+O(b−6kn )

)
(1+o(1)).

Then

lim
n→∞

Bk(n, x)− 1

b−2kn

= 0(3.7)

and

lim
n→∞

Bk(n, x)− 1

b−4kn

=
2σ4

k
x.(3.8)

By (3.1), we have

1− Fk(bn)

1− Fk(anx+ bn)
e−x

= Bk(n, x) exp

(∫ x

0

(
k

σ2
an(ans+ bn)2k−1 − an

ans+ bn
− 1

)
ds

)
= Bk(n, x)

{
1 +

∫ x

0

(
k

σ2
an(ans+ bn)2k−1 − an

ans+ bn
− 1

)
ds

+
1

2

(∫ x

0

(
k

σ2
an(ans+ bn)2k−1 − an

ans+ bn
− 1

)
ds

)2

(1 + o(1))

}
.(3.9)
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Combining with (3.5), (3.6), (3.7), (3.8) and (3.9), we have

lim
n→∞

b2kn vk(bn;x)(3.10)

= lim
n→∞

logFk(anx+ bn) + (1− Fk(bn))e−x

n−1b−2kn

= lim
n→∞

−(1− Fk(anx+ bn))− 1
2 (1− Fk(anx+ bn))2(1 + o(1))

n−1b−2kn

+ lim
n→∞

(1− Fk(bn))e−x

n−1b−2kn

= lim
n→∞

1− Fk(anx+ bn)

n−1

1−Fk(bn)
1−Fk(anx+bn)

e−x − 1

b−2kn

= e−x lim
n→∞

{
Bk(n, x)b2kn

(∫ x

0

(
k

σ2
an(ans+ bn)2k−1 − an

ans+ bn
− 1

)
ds

)
(1 + o(1)) +

Bk(n, x)− 1

b−2kn

}
= e−x lim

n→∞

∫ x

0

b2kn

(
k

σ2
an(ans+ bn)2k−1 − an

ans+ bn
− 1

)
ds

=
σ2

2k

(
(2k − 1)x2 − 2x

)
e−x =: lk(x),

where the last step follows by the dominated convergence theorem and

lim
n→∞

b2kn

(
k

σ2
an(ans+ bn)2k−1 − 1

)
=

2k − 1

k
σ2s

and

lim
n→∞

anb
2k
n

ans+ bn
=
σ2

k
.

By arguments similar to (3.10), we have

lim
n→∞

b2kn

[
b2kn vk(bn;x)− lk(x)

]
= lim

n→∞

logFk(anx+ bn) + n−1e−x − n−1b−2kn lk(x)

n−1b−4kn

= lim
n→∞

logFk(anx+ bn) + (1− Fk(bn))e−x(1− lk(x)exb−2kn )

n−1b−4kn

= lim
n→∞

−(1− Fk(anx+ bn)) + (1− Fk(bn))e−x(1− lk(x)exb−2kn )

n−1b−4kn

= lim
n→∞

1− Fk(anx+ bn)

n−1

1−Fk(bn)
1−Fk(anx+bn)

e−x(1− lk(x)exb−2kn )− 1

b−4kn
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= e−x lim
n→∞

{
Bk(n, x)b4kn

[ ∫ x

0

(
k

σ2
an(ans+ bn)2k−1 − an

ans+ bn
− 1

)
ds− lk(x)exb−2kn

]

+
1

2
Bk(n, x)b4kn

[ ∫ x

0

(
k

σ2
an(ans+ bn)2k−1 − an

ans+ bn
− 1

)
ds

]2
−Bk(n, x)lk(x)exb2kn

∫ x

0

(
k

σ2
an(ans+ bn)2k−1 − an

ans+ bn
− 1

)
ds+

Bk(n, x)− 1

b−4kn

}
= − σ4

24k2

[
3(2k − 1)2x4 − 4(2k + 1)(2k − 1)x3 + 24x2 − 48kx

]
e−x

= wk(x).

This arrives to the conclusion of Lemma 3.2. �

Lemma 3.3. Let Fk(x) stand for the cdf of GMD(k). Then with normalizing
constants an and bn determined by (1.4) and (1.5), for large n we have

Fn−1k (anx+ bn) = Cn(x)Λ(x)(3.11)

here

Cn(x) = 1 + b−2kn lk(x) + b−4kn

(
wk(x) +

1

2
l2k(x)

)
(1 + o(1)),

lk(x) and wk(x) are given by Theorem 2.1.

Proof. By using Theorem 2.1, we have

Fnk (anx+ bn) = Λ(x)+ b−2kn lk(x)Λ(x)+ b−4kn

(
wk(x)+

1

2
l2k(x)

)
Λ(x)(1+ o(1))

=

[
1 + b−2kn lk(x) + b−4kn

(
wk(x) +

1

2
l2k(x)

)
(1 + o(1))

]
Λ(x).(3.12)

Observing that

Fnk (anx+ bn)→ exp(−e−x) as n→∞,

then we have

n(1− Fk(anx+ bn))→ e−x,

hence,

1− Fk(anx+ bn) = O(n−1),

which implies

1

Fk(anx+ bn)
=

1

1− (1− Fk(anx+ bn))
= 1 +O(n−1).(3.13)

Combining (3.12) and (3.13) together, we derive the desired result. �

Lemma 3.4. Let fk(x) denote the pdf of GMD(k). Then

fk(x) = (1− Fk(x))Dn(x)(3.14)
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for large x, and with normalizing constants an and bn determined by (1.4) and
(1.5), we have

anfk(anx+ bn)

1− Fk(anx+ bn)
= 1 +A1(x)b−2kn +A2(x)b−4kn +O(b−6kn )(3.15)

for large n, where

Dn(x) = kσ−2x2k−1
(
1− k−1σ2x−2k + 2k−1σ4x−4k +O(x−6k)

)
,

A1(x) = k−1σ2((2k − 1)x− 1) and

A2(x) = k−2σ4((2k − 1)(k − 1)x2 + x+ 2k).

Proof. By Lemma 3.1, we have

fk(x) = (1− Fk(x))kσ−2x2k−1
(
1 + k−1σ2x−2k + k−2(1− 2k)σ4x−4k +O(x−6k)

)−1
= (1− Fk(x))kσ−2x2k−1

(
1− k−1σ2x−2k + 2k−1σ4x−4k +O(x−6k)

)
=: (1− Fk(x))Dn(x)

for large x. Therefore, by (1.5), for large n we have

anfk(anx+ bn)

1− Fk(anx+ bn)

= anDn(anx+ bn)

= ankσ
−2(anx+ bn)2k−1

(
1− k−1σ2(anx+ bn)−2k + 2k−1σ4(anx+ bn)−4k

+O((anx+ bn)−6k)
)

= (1 + k−1σ2b−2kn x)2k−1 − k−1σ2b−2kn (1 + k−1σ2b−2kn x)−1

+ 2k−1σ4b−4kn (1 + k−1σ2b−2kn x)−2k−1 +O(b−6kn )

= 1 + k−1σ2((2k − 1)x− 1)b−2kn + k−2σ4((2k − 1)(k − 1)x2 + x+ 2k)b−4kn

+O(b−6kn )

=: 1 +A1(x)b−2kn +A2(x)b−4kn +O(b−6kn ).

The wanted result is deduced. �

Lemma 3.5. Let Cn(x) and Dn(x) respectively be defined by (3.11) and (3.14).

Then, for k > 1
2 , −c log bn < x < db

2
3k
n and large n, we have

|anCn(x)Dn(anx+ bn)| < 2,∣∣b2kn (anCn(x)Dn(anx+ bn)− 1)
∣∣

≤ 1 + k−1σ2

(
(2k − 1)|x|+ 1

2
((2k − 1)x2 + 2|x|)e−x

)
, and∣∣b2kn (b2kn (anCn(x)Dn(anx+ bn)− 1)− lk1(x)

)∣∣
≤ 1 + k−2σ4

(
(2k − 1)|k − 1|x2 + |x|+ 2k +

1

2

(
1

4
(2k − 1)2x4
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+
4

3
(2k − 1)|k − 1||x|3 + |6k − 5|x2 + 2|1− 2k||x|

)
e−x

+
1

8
((2k − 1)x2 + 2|x|)2e−2x

)
,

with 0 < c, d < 1, here the normalizing constants an and bn are given by (1.4)
and (1.5), and

lk1 = k−1σ2

(
1

2

(
(2k − 1)x2 − 2x

)
e−x + (2k − 1)x− 1

)
.

Proof. These results are directly from Lemmas 3.3 and 3.4. The details are
omitted. �

In order to derive later lemmas, we need the following result.
It follows from [4] that we have the Mills type inequality of the GMD(k) as

follows:

σ2

k
x1−2k <

1− Fk(x)

fk(x)
<
σ2

k
x1−2k

(
1 +

(
σ2

k
x2k − 1

)−1)
(3.16)

for all x > 0 and k > 1
2 , where σ is positive.

Lemma 3.6. For any constants 0 < c, d < 1 and arbitrary nonnegative integers
i, j, we have

lim
n→∞

bin

∫ ∞
db

2
3
k

n

|x|j exp(−i0x)Λ(x)dx = 0, i0 = 1, 2, 3, . . . ,(3.17)

lim
n→∞

bin

∫ ∞
db

2
3
k

n

|x|jβn(x)dx = 0,(3.18)

lim
n→∞

bin

∫ −c log bn
−∞

|x|j exp(−i0x)Λ(x)dx = 0, i0 = 1, 2, 3, . . . ,(3.19)

and

lim
n→∞

bin

∫ −c log bn
−∞

|x|jβn(x)dx = 0,(3.20)

with the normalizing constant bn determined by (1.4).

Proof. Firstly, we consider the Eq. (3.17). Noting that the inequalities 1−x <
e−x < 1 for x > 0, we have

bin

∫ ∞
db

2
3
k

n

|x|j exp(−i0x)Λ(x)dx

< bin

∫ ∞
db

2
3
k

n

|x|j exp(−i0x)dx

< bin exp

(
−1

2
i0db

2
3k
n

)∫ ∞
db

2
3
k

n

|x|j exp

(
−1

2
i0x

)
dx
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→ 0 as n→∞.
Eq. (3.17) is complete.

Secondly, we consider Eq. (3.18). By (3.16) and Lemma 3.5, we have

bin

∫ ∞
db

2
3
k

n

|x|jβn(x)dx

= bin

∫ ∞
db

2
3
k

n

|x|jan(1− Fk(bn))−1Fn−1k (anx+ bn)fk(anx+ bn)dx

= bin

∫ ∞
db

2
3
k

n

|x|janCn(x)Dn(anx+ bn)
(1− Fk(anx+ bn))

1− Fk(bn)
Λ(x)dx

< 2bin

∫ ∞
db

2
3
k

n

|x|j (1− Fk(anx+ bn))

1− Fk(bn)
Λ(x)dx

< 4bin

∫ ∞
db

2
3
k

n

|x|j exp(−x)Λ(x)dx

→ 0 as n→∞.
Eq. (3.18) is finished.

Next, we consider Eq. (3.19).

bin

∫ −c log bn
−∞

|x|j exp(−i0x)Λ(x)dx

= bin

∫ ∞
c log bn

tj exp(i0t) exp(− exp(t))dt

< bin exp

(
−1

2
bcn

)∫ ∞
1

tj exp(i0t) exp

(
−1

2
exp(t)

)
dt

→ 0 as n→∞
by methods similar to Eq. (3.18). Eq. (3.19) is proved.

Last, we consider Eq. (3.20). Observing that the fact 1 − αx < (1 − x)α <

1−αx+ α(α−1)
2 x2 as 0 < x < 1

2 , α > 2, then for −∞ < x < −c log bn, by (3.16)
we have

nanfk(anx+ bn) =
anfk(anx+ bn)

1− Fk(bn)

< exp

(
− b

2k
n

2σ2

(
(1 + k−1σ2b−2kn x)2k − 1

))
< e−x

and

1− Fk(anx+ bn)

1− Fk(bn)
> (1 + k−1σ2b−2kn x)1−2k

(
1 +

(
σ2

k
b2kn − 1

)−1)

exp

(
− b

2k
n

2σ2

(
(1 + k−1σ2b−2kn x)2k − 1

))
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> (1 + k−1σ2b−2kn x)1−2k

(
1 +

(
σ2

k
b2kn − 1

)−1)

exp

(
−x− 1

2
(2− k−1)σ2b−2kn x2

)
>

1

2
e−x

for large n. Thus,

bin

∫ −c log bn
−∞

|x|jβn(x)dx

= bin

∫ −c log bn
−∞

|x|jan(1− Fk(bn))−1Fn−1k (anx+ bn)fk(anx+ bn)dx

< bin

∫ −c log bn
−∞

|x|jan(1− Fk(bn))−1fk(anx+ bn)

exp [−(n− 1)(1− Fk(anx+ bn))] dx

< bin

∫ −c log bn
−∞

|x|j exp(−x) exp

(
−1

2
exp(−x)

)
dx

→ 0 as n→∞.

Eq. (3.20) is derived.
Combining those results above, we complete the proof. �

Lemma 3.7. Set

Hk(bn;x) =
1− Fk(anx+ bn)

1− Fk(bn)
ex − 1.

For large n and −c log bn < x < db
2
3k
n , some integrable functions independent of

n dominate xrb2kn Θn(βn,Λ
′;x) and xrb2kn

(
b2kn Θn(βn,Λ

′;x) − P (x)Λ′(x)
)

with
r > 0 and 0 < c, d < 1, here an and bn are defined by (1.4) and (1.5), and P (x)
is determined by (2.2).

Proof. Rescript

b2kn Θn(βn,Λ
′;x) = b2kn (anCn(x)Dn(anx+ bn)− 1)Λ′(x)

+ b2kn anCn(x)Dn(anx+ bn)Hk(bn;x)Λ′(x).

Easily check that
∫∞
−∞ yi exp(−sy) exp(− exp(−y))dy = (−1)iΓ(i)(s) < ∞ for

s ∈ R+ and nonnegative integers i. Lemma 3.5 proves that

b2kn (anCn(x)Dn(anx+ bn)− 1)Λ′(x)

is bounded by some integrable function independent of n. Next we show that
b2kn Hk(bn;x) is bounded by p(x), here p(x) is a polynomial on x.
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Rescript

b2kn Hk(bn;x) = b2kn (Ek(n, x)− 1)− b2kn Ek(n, x)

∫ x

0

δn(s)ds(1 + o(1))(3.21)

=: An(x)− Bn(x),

here

δn(x) =
k

σ2
an(anx+ bn)2k−1 − an

anx+ bn
− 1.

For −c log bn < x < db
2
3k
n , by Lemma 3.2 and (1.5) we have

|An(x)| < 1(3.22)

and

|Bn(x)| < 1+
1

2
(2−k−1)σ2x2+

2

3
(2−k−1)

∣∣1−k−1∣∣σ4|x|3+
1

kσ2−c
|x|(3.23)

for large n.
By (3.22) and (3.23), b2kn Hk(bn;x) is bounded by one integrable function

independent of n.
Rescript

b2kn
(
b2kn Θn(βn,Λ

′;x)− P (x)Λ′(x)
)

= b2kn
(
b2kn
(
an(1− Fk(bn))−1Fn−1k (anx+ bn)fk(anx+ bn)− Λ′(x)

)
−P (x)Λ′(x))

= b2kn

(
b2kn

((
(1− Fk(anx+ bn))

1− Fk(bn)
ex − 1 + 1

)
anCn(x)Dn(anx+ bn)− 1

)
−(lk1(x) + lk2(x))) Λ′(x)

= b2kn

(
b2kn anCn(x)Dn(anx+ bn)

(
Hk(bn;x)− b−2kn lk2(x)

)
+ b2kn

(
anCn(x)Dn(anx+ bn)− 1− b−2kn lk1(x)

)
+ (anCn(x)Dn(anx+ bn)− 1) lk2(x)

)
Λ′(x),

here

lk2(x) = −1

2
k−1σ2((2k − 1)x2 + 2x).

It follows from Lemma 3.5 that only need to calculate the bound of

b2kn

(
b2kn anCn(x)Dn(anx+ bn)

(
Hk(bn;x)− b−2kn lk2(x)

))
.

Rescript

b2kn

(
b2kn anCn(x)Dn(anx+ bn)

(
Hk(bn;x)− b−2kn lk2(x)

))
= b4kn (Ek(n, x)− 1)− b2kn

(
Ek(n, x)b2kn

∫ x

0

δ(s)ds+ b−2kn lk2(x)

)
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+
1

2
Ek(n, x)b4kn

(∫ x

0

δ(s)ds

)2

(1 + o(1))

=: In(x)− Jn(x) +Kn(x).

As to the case of 0 < x < db
2
3k
n , we have

|In(x)| < 4k−2σ4(k + 4(2k − 1)σ2)x(3.24)

for large n, by Lemma 3.2 and 1− αx < (1 + x)−α < 1 for α > 0 and x > 0.
As to the case of −c log bn < x < 0, we have

|In(x)| < 4k−2σ4(k + 4(2k − 1)σ2)|x|(3.25)

for large n, by Lemma 3.2 and 1+αx < (1+x)α < 1 for α > 1 and −1 < x < 0.
Similarly, as for the bound of Jn(x) and Kn(x), we have

|Jn(x)| < 2

3
(2− k−1)

∣∣1− k−1∣∣σ4|x|3 +
1

2
k−1σ2

∣∣kσ−2 − c∣∣−1 x2(3.26)

and

|Kn(x)| < 1+
1

2

(
1

2

(
2− k−1

)
σ2x2 +

2

3

(
2− k−1

) ∣∣1− k−1∣∣σ4|x|3

+
∣∣kσ−2 − c∣∣−1 |x|)2(3.27)

for large n, as −c log bn < x < db
2
3k
n .

Combining (3.24)-(3.27) together, the desired result is gained. The proof is
finished. �

Proof of Theorem 2.1. By (3.10), we have vk(bn;x)→ 0 and∣∣∣∣ ∞∑
i=3

vi−3k (bn;x)

i!

∣∣∣∣ < exp

(
|vk(bn;x)|

)
→ 1 as n→∞.

By applying Lemma 3.2, we have

b2kn

[
b2kn

(
Fnk (anx+ bn)− Λ(x)

)
− lk(x)Λ(x)

]
= b2kn

[
b2kn

(
exp

(
vk(bn;x)

)
− 1

)
− lk(x)

]
Λ(x)

=

[
b2kn

(
b2kn vk(bn;x)− lk(x)

)
+ b4kn v

2
k(bn;x)

(
1

2
+ vk(bn;x)

∞∑
i=3

vi−3k (bn;x)

i!

)]
Λ(x)

→
(
wk(x) +

l2k(x)

2

)
Λ(x) as n→∞.

We obtain the desired result. �
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Proof of Theorem 2.2. Let Ek(n, x) = 1/Bk(n, x), by (3.7) and (3.8), we have

lim
n→∞

b2kn (Ek(n, x)− 1) = 0(3.28)

and

lim
n→∞

b4kn (Ek(n, x)− 1) = −2k−1σ4x.(3.29)

It follows from (3.9) that

1− Fk(anx+ bn)

1− Fk(bn)
ex

= Ek(n, x)

{
1−

∫ x

0

δn(s) ds+
1

2

(∫ x

0

δn(s) ds

)2

(1 + o(1))

}
,

(3.30)

where

δn(x) =
k

σ2
an(anx+ bn)2k−1 − an

anx+ bn
− 1.

By (3.11) and (3.14), we have

anCn(x)Dn(anx+ bn)

(3.31)

=

(
1 + b−2kn lk(x) + b−4kn

(
wk(x) +

1

2
l2k(x)

)
(1 + o(1))

)
×
(
1 +A1(x)b−2kn +A2(x)b−4kn +O(b−6kn )

)
= 1 + (lk(x) +A1(x))b−2kn +

(
wk(x) +

1

2
l2k(x) + lk(x)A1(x) +A2(x)

)
b−4kn

+O(b−6kn ).

By Lemmas 3.3 and 3.4 and combining (3.28)-(3.31) together, we have

Θn(βn,Λ
′;x)

= βn(x)− Λ′(x)

= (1− Fk(bn))−1anF
n−1
k (anx+ bn)fk(anx+ bn)− Λ′(x)

= (1− Fk(bn))−1anCn(x)Λ(x)(1− Fk(anx+ bn))Dn(anx+ bn)− Λ′(x)

=

(
Ek(n, x)(lk(x) +A1(x))b−2kn

+ Ek(n, x)

(
wk(x) +

1

2
l2k(x) + lk(x)A1(x) +A2(x)

)
b−4kn

− Ek(n, x)
[
1 + (lk(x) +A1(x))b−2kn

+

(
wk(x) +

1

2
l2k(x) + lk(x)A1(x) +A2(x)

)
b−4kn

]
×
∫ x

0

δn(s) ds+
1

2
Ek(n, x)

[
1 + (lk(x) +A1(x))b−2kn
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+

(
wk(x) +

1

2
l2k(x) + lk(x)A1(x) +A2(x)

)
b−4kn +O(b−6kn )

]
(∫ x

0

δn(s) ds

)2

(1 + o(1)) + Ek(n, x)− 1

)
Λ′(x).(3.32)

Thus, by applying (3.32) we have

lim
n→∞

b2kn Θn(βn,Λ
′;x)

(3.33)

= lim
n→∞

(
lk(x) +A1(x)−

∫ x

0

b2kn δn(s) ds

)
Λ′(x)

= k−1σ2

(
1

2

(
(2k − 1)x2 − 2x

)
e−x+

(
−1

2
(2k − 1)x2 + (2k − 3)x− 1

))
Λ′(x)

=: P (x)Λ′(x).

Combining (3.32) and (3.33) together, we have

lim
n→∞

b2kn
(
b2kn Θn(βn,Λ

′;x)− P (x)Λ′(x)
)

= lim
n→∞

b2kn

(
(Ek(n, x)− 1)(lk(x) +A1(x))

+ Ek(n, x)

(
wk(x) +

1

2
l2k(x) + lk(x)A1(x) +A2(x)

)
b−2kn

− b2kn
∫ x

0

(
δn(s)−

(
2k − 1

k
σ2s− σ2

k

)
b−2kn

)
ds

− Ek(n, x)

[
lk(x) +A1(x) +

(
wk(x)+

1

2
l2k(x)+ lk(x)A1(x)+A2(x)

)
b−2kn

]
∫ x

0

δn(s) ds+
1

2
Ek(n, x)b2kn

[
1 + (lk(x) +A1(x))b−2kn

+

(
wk(x) +

1

2
l2k(x) + lk(x)A1(x) +A2(x)

)
b−4kn +O(b−6kn )

]
(∫ x

0

δn(s) ds

)2

(1 + o(1)) + b2kn (Ek(n, x)− 1)

)
Λ′(x)

= lim
n→∞

(
b4kn (Ek(n, x)− 1) + wk(x) +

1

2
l2k(x) + lk(x)A1(x) +A2(x)

− b4kn
∫ x

0

(
δn(s)−

(
2k − 1

k
σ2s− σ2

k

)
b−2kn

)
ds

− (lk(x) +A1(x))b2kn

∫ x

0

δn(s) ds+
1

2
b4kn

(∫ x

0

δn(s) ds

)2

(1 + o(1))

)
Λ′(x)

=
1

8
k−2σ4

(
(2k − 1)x2 − 2x

)2
e−2x − 1

24
k−2σ4

(
9(2k − 1)2x4
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−16(2k − 1)(2k + 1)x3 + 6(12k + 1)x2 − 24(k + 1)x
)
e−x

+ k−2σ4

(
1

8
(2k − 1)2x4 − 1

3
(2k − 1)(4k − 1)x3

+
1

2
(4k2 + 1)x2 − 2kx+ 2k

)
Λ′(x)

=: Q(x)Λ′(x).

The conclusion follows. �

Proof of Theorem 2.3. By Lemmas 3.5-3.7 and the dominated convergence the-
orem, we have

b2kn (mr(n)−mr)

=

∫ ∞
−∞

xrb2kn Θn(βn,Λ
′;x)dx

=

∫ −c log bn
−∞

xrb2kn Θn(βn,Λ
′;x)dx+ b2kn

∫ db
2
3
k

n

−c log bn
xrb2kn Θn(βn,Λ

′;x)dx

+

∫ ∞
db

2
3
k

n

xrb2kn Θn(βn,Λ
′;x)dx

→
∫ ∞
−∞

xrP (x)Λ′(x)dx

= − 2−1k−1σ2r ((2k − 1)mr+1 − 2mr)

and

b2kn
(
b2kn (mr(n)−mr) + 2−1k−1σ2r ((2k − 1)mr+1 − 2mr)

)
=

∫ ∞
−∞

xrb2kn
(
b2kn Θn(βn,Λ

′;x)− P (x)Λ′(x)
)

dx

=

∫ +∞

db
2
3
k

n

xrb2kn
(
b2kn Θn(βn,Λ

′;x)− P (x)Λ′(x)
)

dx

+

∫ db
2
3
k

n

−c log bn
xrb2kn

(
b2kn Θn(βn,Λ

′;x)− P (x)Λ′(x)
)

dx

+

∫ −c log bn
−∞

xrb2kn
(
b2kn Θn(βn,Λ

′;x)− P (x)Λ′(x)
)

dx

→
∫ ∞
−∞

xrQ(x)Λ′(x)dx

= − rk−2σ4

{(
−1

8
(2k − 1)2(r + 3) +

1

3
(k − 1)(2k − 1)

)
mr+2

+
1

2
((2k − 1)(r + 2)− 1)mr+1 +

(
2k − 1

2
(r + 1)

)
mr

}
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as n→∞ with ∫ +∞

−∞
xr+1e−2xΛ(x) dx = −(r + 1)mr +mr+1

and ∫ +∞

−∞
xr+1e−3xΛ(x) dx = r(r + 1)mr−1 − 3(r + 1)mr + 2mr+1.

The proof is complete. �
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