• Title/Summary/Keyword: asymptotic function

Search Result 396, Processing Time 0.025 seconds

A new test of exponentiality against NDVRL

  • Hassan, M.KH.
    • International Journal of Reliability and Applications
    • /
    • v.16 no.2
    • /
    • pp.123-133
    • /
    • 2015
  • In this paper, the problem of testing exponentiality against net decreasing variance residual lifetime (NDVRL) classes of life distributions is investigated. For this property a nonparametric test is presented based on kernel method. The test is presented for complete and right censored data. Furthermore, Pitman's asymptotic relative efficiency (PARE) is discussed to assess the performance of the test with respect to other tests. Selected critical values are tabulated. Some numerical simulations on the power estimates are presented for proposed test. Finally, numerical examples are presented for the purpose of illustrating our test.

ASYMPTOTIC ANALYSIS OF THE LOSS PROBABILITY IN THE GI/PH/1/K QUEUE

  • Kim Jeong-Sim
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.273-283
    • /
    • 2006
  • We obtain an asymptotic behavior of the loss probability for the GI/PH/1/K queue as K tends to infinity when the traffic intensity p is strictly less than one. It is shown that the loss probability tends to 0 at a geometric rate and that the decay rate is related to the matrix generating function describing the service completions during an interarrival time.

NEW INFORMATION INEQUALITIES ON ABSOLUTE VALUE OF THE FUNCTIONS AND ITS APPLICATION

  • CHHABRA, PRAPHULL
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.371-385
    • /
    • 2017
  • Jain and Saraswat (2012) introduced new generalized f-information divergence measure, by which we obtained many well known and new information divergences. In this work, we introduce new information inequalities in absolute form on this new generalized divergence by considering convex normalized functions. Further, we apply these inequalities for getting new relations among well known divergences, together with numerical verification. Application to the Mutual information is also presented. Asymptotic approximation in terms of Chi- square divergence is done as well.

DELAY-DEPENDENT GLOBAL ASYMPTOTIC STABILITY ANALYSIS OF DELAYED CELLULAR NEURAL NETWORKS

  • Yang, Yitao;Zhang, Yuejin
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.583-596
    • /
    • 2010
  • In this paper, the problem of delay-dependent stability analysis for cellular neural networks systems with time-varying delays was considered. By using a new Lyapunov-Krasovskii function, delay-dependant stability conditions of the delayed cellular neural networks systems are proposed in terms of linear matrix inequalities (LMIs). Examples are provided to demonstrate the reduced conservatism of the proposed stability results.

Evaluation of Microcanonical Rate Constants by Semiclassical Boundary Conditions : Early Asymptotic Analysis

  • Sungyul Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.538-541
    • /
    • 1992
  • An approximate scheme for evaluating total reaction probability is proposed. Semiclassical boundary conditions are imposed well before the asymptotic region in the reactant and product channels to calculate the Green's function and its derivatives. Propagations are confined to a limited regime near the activated complex. Calculations are made for one dimensional Eckart barrier model of H + $H_2$ reaction. Implications of the procedure in multi-dimensional systems are discussed.

Testing of a discontinuity point in the log-variance function based on likelihood (가능도함수를 이용한 로그분산함수의 불연속점 검정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Let us consider that the variance function in regression model has a discontinuity/change point at unknown location. Yu and Jones (2004) proposed the local polynomial fit to estimate the log-variance function which break the positivity of the variance. Using the local polynomial fit, Huh (2008) estimate the discontinuity point of the log-variance function. We propose a test for the existence of a discontinuity point in the log-variance function with the estimated jump size in Huh (2008). The proposed method is based on the asymptotic distribution of the estimated jump size. Numerical works demonstrate the performance of the method.

  • PDF

ON PERIODICIZING FUNCTIONS

  • Naito Toshiki;Shin Jong-Son
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.253-263
    • /
    • 2006
  • In this paper we introduce a new concept, a 'periodicizing' function for the linear differential equation with the periodic forcing function. Moreover, we construct this function, which is closely related with the solution of a difference equation and an indefinite sum. Using this function, we can obtain a representation of solutions from which we see immediately the asymptotic behavior of the solutions.

An Asymptotic Analysis of Excess Enthalpy Flame (초과엔탈피 화염의 점근 해석)

  • Lee, Dae Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.135-137
    • /
    • 2014
  • Excess enthalpy flame propagating an porous inert medium, which recirculate exhaust heat to the upstream cold mixture, is theoretically analyzed. Using the activation-energy asymptotics, the flame structure is divided into the thin reaction and the gas-phase preheat zone, as is traditionally done. Ahead and behind of the two, there exist an outer preheat zone, where heat is convectively transferred from solid to gas, and a downstream re-equilibrium zone, where thermal equilibrium between phases is established. Asymptotic solutions of species and energy equations in each zone are obtained and then matched to each other, and finally the mass burning rate is obtained as a function of the flame propagation velocity with respect to the solid phase and physical properties of gas and solid.

  • PDF