Testing of a discontinuity point in the log-variance function based on likelihood

가능도함수를 이용한 로그분산함수의 불연속점 검정

  • Huh, Jib (Department of Statistics, Duksung Women's University)
  • 허집 (덕성여자대학교 정보통계학과)
  • Published : 2009.01.31

Abstract

Let us consider that the variance function in regression model has a discontinuity/change point at unknown location. Yu and Jones (2004) proposed the local polynomial fit to estimate the log-variance function which break the positivity of the variance. Using the local polynomial fit, Huh (2008) estimate the discontinuity point of the log-variance function. We propose a test for the existence of a discontinuity point in the log-variance function with the estimated jump size in Huh (2008). The proposed method is based on the asymptotic distribution of the estimated jump size. Numerical works demonstrate the performance of the method.

회귀모형의 분산함수가 알려져 있지 않은 한 점에서 불연속이라 가정하자. Yu와 Jones (2004)는 음이 아닌 값을 취하는 분산함수를 실수 값을 취하도록 하기 위하여 로그 변환하였고, 변환된 로그분산함수를 국소다항적합으로 추정하였다. 로그분산함수의 국소다항적합을 이용하여, Huh (2008)는 분산함수의 불연속점의 추정하는 대신 로그분산함수의 불연속점을 추정하였다. 본 연구는 Huh의 점프의 크기 추정량의 점근분포를 이용하여 로그분산함수의 불연속점의 존재여부에 대한 가설검정을 제안하고, 제안한 방법에 대한 모의실험 결과를 제시하고자 한다.

References

  1. Chen, G., Choi, Y. K. and Zhou, Y. (2005). Nonparametric estimation of structural change points in volatility models for time series. Journal of Econometrics, 126, 79-114. https://doi.org/10.1016/j.jeconom.2004.02.008
  2. Delgado, M. A. and Hidalgo, J. (2000). Nonparametric inference on structural breaks. Journal of Econometrics, 96, 113-144. https://doi.org/10.1016/S0304-4076(99)00052-4
  3. Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika, 73, 625-634. https://doi.org/10.1093/biomet/73.3.625
  4. Gregoire, G. and Hamrouni, Z. (2002). Change point estimation by local linear smoothing. Journal of Multivariate Analysis, 83, 56-83. https://doi.org/10.1006/jmva.2001.2038
  5. Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: The effect of estimating the mean. Journal of Royal Statistical Society Series B, 51, 3-14.
  6. Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 77, 521-528. https://doi.org/10.1093/biomet/77.3.521
  7. Huh, J. (2002). Nonparametric discontinuity point estimation in density or density derivatives. Journal of Korean Statistical Society, 31, 261-276.
  8. Huh, J. (2005). Nonparametric detection of a discontinuity point in the variance function with the second moment function. Journal of Korean Data & Information Science Society, 16, 591-601.
  9. Huh, J. (2006). Testing the existence of a discontinuity point in the variance function. Journal of Korean Data & Information Science Society, 17, 707-716.
  10. Huh, J. (2008). Likelihood based detection of a change point in the variance function. Preprint.
  11. Kang, K. C. and Huh, J. (2006). Nonparametric estimation of the variance function with a change point. Journal of Korean Statistical Society, 35, 1-24.
  12. Muller, H G. (1992). Change-points in nonparametric regression analysis. Annals of Statistics, 20, 737-761. https://doi.org/10.1214/aos/1176348654
  13. Muller, H. G. and Stadtmuller, U. (1987). Estimation of heteroscedasticity in regression analysis. Annals of Statistics, 15, 610-625.
  14. Perron, B. (2001). Jumps in the volatility of financial markets. Mimeo, available at http://mapageweb.umon treal.ca/perrob.
  15. Rice, J. (1984). Bandwidth choice for nonparametric regression. Annals of Statistics, 12, 1215-1230. https://doi.org/10.1214/aos/1176346788
  16. Ruppert, D., Wand, M. P., Holst, U. and H¨ossjer, O. (1997). Local polynomial variance-function estimation. Technomtrics, 39, 262-273. https://doi.org/10.2307/1271131
  17. Yu, K. and Jones, M. C. (2004). Likelihood-Based Local Linear Estimation of the Conditional Variance Function. Journal of the American Statistical Association, 99, 139-144. https://doi.org/10.1198/016214504000000133