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An approximate scheme for evaluating total reaction probability is proposed. Semiclassical boundary conditions are 

imposed well before the asymptotic region in the reactant and product channels to calculate the Green's function 

and its derivatives. Propagations are confined to a limited regime near the activated complex. Calculations are made 

for one dimensional Eckart barrier model of H+氏 reaction. Implications of the procedure in multi-dimensional 

systems are discussed.

Introduction

The rate constants of chemical reactions are one of the 

most important properties of chemical systems. It is the ulti­

mate goal of molecular reaction dynamics to evaluate the 

rate constants when the potential surfaces for the reacting 

species are given. Many different approaches have been used 

to calculate this important quantities in various situations.

Exact evaluation of the rate constants is quite involved. 

One has to solve the close-coupled equations that inchid은 

many channels (elastic, inela야ic and reactive), calculate 

state-to-state cross sections from the S-matrix elements, 

which can be combined to give the total reaction cross sec- 

tions.l~3 Even for atom-diatom reactions, the efforts for 

solving these close-coupled equations are sometimes prohibi­

tive. If one is interested only in the thermal rate constants,

i.e. t the net reactive flux, there should be a more economical 

way of calc미ating it, without s이ving for all the state-to-state 

information first.

Choosing appropriate coordinate systems for de옹cribing 

reactive scattering processes is another serious problem. In 

A+BC^AB+C type rearrangement processes, it is well 

known4 that different coordinate systems should be employed 

to describe reactants and products. For the asymptotic analy­

sis, different sets of Jacobi coordinates are used for the re­

actants and products, respectively, while other types of co­

ordinates are more convenient for regimes near the activated 

complexes. The transformations between these coordinate 

systems are not trivial. These problems arise form the neces­

sity of asymptotic analysis that should be performed when 

the reacting species are far apart. If we can confine the cal­

culation to a limited region near the transition state, we may 

not have to deal with the coordinate transformations, since 

the asymptotic analysis can be obviated.

Several methods that avoid the asymptotic analysis have 

been proposed. Transition state theory has been used to cal­

culate approximate rate constants, and considerabe effort has 

been directed to improving the accuracy of the method.5-7 

While it is difficult to systematically improve the accuracy 

of transition state theory, its advantage i옹 obvious: We only 

need information on the potential surface near the transition 

state. Finite difference methods and path integral techniques 

have been proposed by McCurdy et al? and by Miller et 

al? respectively, for evaluating total reaction probability for 

one-dimensional reacting sy옹tems, but exten옹ions to multidi­

mensional systems are not straightforward in their proce­

dures. Park and Light10 and Day and Truhlar11 have eval­

uated accurate thermal rate constants for three-dimensional 

reactions by evaluating the time correlation function in a 

localized bases, but so far their approaches have not been 

widely exploited. Time-dependent wavepacket propagation is 

another popular method of solving dynamical problems 

without doing asymptotic analysis.12-14 These approaches 

usually assume short-time approximations. A popular appli­

cation is to photodissociation in an excited electronic state. 

Here one propagates the wavepackets along the excited state 

surfaces until they reach the asymptotic ragion. Since the 

propagation is performed with respect to time, not spatial 

coordinates, such methods are efficient when the excited po­

tential surfaces are repulsive. When the wavepackets return 

to the Franck-Condon region long after the excitation, as 

in predissociating systems, the short-time approximations 

fail, and the time-dependent methdologies become inefficient.

Singer et al. have developed15 an efficient algorithm that 

combines the advantages of the time-independent and time­

dependent methods and applied it to Raman scattering prob­

lems. The algorithm, called early asymptotic analysis, em­

ploys semiclassical boundary conditions, based on the WKB 

approximation, that are imposed well before the aymptotic 

region. Since the semiclassical boundary conditions depend 

locally on the matching point, information on the potential 

surfaces beyond the matching point is not needed. The pro­

pagation is performed with respect to the spatial coordinates, 

not time, and consequently the algorithm can be applied to 

any kind of system. Singer et 기. have shown that the method 

gives Raman scattering amplitudes accurate to 3 or more 

significant figures when the semiclassical boundary condi­
tions are imposed at 1-3 A beyond the classical turning 

points for Na dimer (single channel problem) and Br2 (multi­

channel problem) molecules, w은 11 before the asymptotic re­

gion. We propose here to extend these ideas to reactive scat­

tering problems. The total reaction probability is expressed 

in terms of the Green's function and its derivatives,9 and 

the semiclassical boundary conditions are derived in section 

IL Approximate reaction probabilities are evaluated for a one 

dimensional model H+H2 system in section III.

Theory

Thermal rate constants k(T) can be written as the thermal 



Rate Constants by Early As加pt点:Analysis Bull. Korean Chem. Soc., Vol. 13, No. 5, 1992 539

trace of the microcanonical reaction probability P(E) as16,17 

MT)=UJh Z(.T)} jdEP(E) exp(-E/^T)=[P(E)]T 

where E is the total energy, h is the Planck constant,如(7) 

is the Boltzmann constant, and Z(T) is the partition function 

of the reaction system. Microcanonical rate constants are 

given as8,9,18

RE)=2t&2tr[F6(E-H)F8(E-H)], (1)

where […]represents the quantum mechanical trace, F is 

the symmetrized flux operator, 8(E—//) is the density opera­

tor at the energy of E, H is the Hamiltonian. The density 

operator 8(E—//) is related to the Green's operator as

6(E-月)=Tm G(+>(E)/n, (2)

and the reaction probability for a one dimensional barrier 

penetration problem is given as

P(E)=(V|i)2|Im[G(+)fe /)] Im"&+饥 xr)/dx dx^

-[Im 3G(+饥 Q/的2}—e (3)

where xs is the position of the matching point. The Green's 

function G<+)(x; xr) satisHes the equation.

⑴赤 (4)

Here Zf(r) is the Hamiltonian of the system. For a one 

dimensional problem, G<+)0; x') can be expressed in term오 

of the solutions A<_)(r) and A<+)(r),

(2jyW) x<z# (5)

G<+)(X, X)=1a<+)(x)(2h4F)A<_)(x,), *>*' (6)

where 柠⑶ and A(+)(x) are eigenfunctions of Zf(r) that have 

boundary conditions at co and at x->oo, respectively,

(7) 

h^^e+ikx (8)

p is the reduced mass and W is the Wronskian of h(+)(r) 

and 仰)0»

附三侬(一)，h^=hK~^)Ld/dx A(+>«]

-[.d/dx 代p汨 (9)

where t denotes transposition. Using this definition of the 

Wronskian Wt G너七 xr) can be expressed as, at x=x,=xs.

G(+)W V)=方(一)(勿)(2/可)亦+)(五)

=2”{以(+)『」功㈠启円 (10)

where A(+)j?(r) and 成'(尤)are the log-derivative matrices

(11)

成)WHg-S (12)

Similarly, the first derivative and mixed second derivative 

of the Green's function can be obtained as

d/dx G(+板 矿)=2|卯C岛⑴『】一가 (13)

d2/dxdxf GW角 f)=2"/{引—%一龙(+사. (14)

Log-derivatives K 너%x) and have boundary conditions

at kq and l-q。，

砂依 s (15)

片一\*对스一£独_3 (16)

where kXt are wave vectors at x->oo, x-> —oo, re­

spectively.

Semiclassical boundary conditions of &너%(r) and 九㈠成t) 

are obtained, using WKB approximations.

咬B)= 1/(2 kW) d/dx (*«)+: Jfe(r) (17)

A(-)R^(r)=-l/(2 kWj)d/dxm-\ k(r) (18)

These approximate boundary conditions depend locally on 

the matching point xs, and are independent of the potential 

surfaces beyond xs. When these boundary conditions are im­

posed well before the asymptotic region to evaluate the 

Green's function and its devatives at the matching point, 

the reaction probability can be evaluated by using the limited 

portion of the potential surfaces near the transition states, 

and the asymptotic analysis is not needed.

Results and Discussion

Numerical Results for a One Dimensional Eckart 
Barrier. We examine the efficiency of these procedures 

for evaluating the reaction probability for a one dimensional 

problem. Test calculations are performed for the Eckart bar­

rier18'19

V(r)=>AE/(l+>)+By/(l+>)2t

where

> = expra(r-xo)l 

B=[d)u2+0g—AV)"]%

The zero of energy is at —8, AV is the value of the 

pot印itial at x= +oo, U is the value of the potential 가 

its maximum, and the constant x0 is arbitary and chosen 

to give the maximum of the potential at x=0. We perform 

the calculation for the one dimensional Eckart model of 

H + H2 reaction. The reason for this choice is twof이d. First, 

H+H2 is the most fundamental reaction in the molecular 

reaction dynamics. Secondly, it is the severest system for 

checking the accuracy of our procedure, since it is well 

known that the WKB approximation becomes worse for 

lighter systems. Approprite parameters for the H+H2 sys- 

tem8,9,20 are 卩g=6.6 kcal/molt AV=0, a =1.6 bohr \ These 

parameters give a one dimensional system that mimics tun­

neling through the ground state, minimum energy path vibra­

tionally adiabatic potential curve of the H+H2 reaction. Pro­

pagation for is performed from x= —00 to x=0, while 

/i(+)i?(r) is propagated backward from x= +00 to x=0. The 

renormalized Numerov method21,22 is modified to accomodate 

the backward propagation for /i(+^(r). The numerical error 

thus varies as the fourth power of the stepsize.

Table 1 presents the approximate reaction probabilities 

at selected energies. Approximate boundary conditions for 

and h(+)^(r) are imposed at matching points of 

+Rmax and —R허皿 respectively. When Rg =>0 our forma­

lism should give exact reaction probabilities presented in 

column 2 of Table 1. Columns 3 and 4 present the approxi­

mate reaction probabilities for Rg=5 a.u. and 3 a.u.( respec­

tively. Results for &皿=5 a.u. are a little better than those
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Table 1. Comparision of the Semiclassical Approximation with 

Exact Results

E (Kcal) Exact*1 -
Numerical

Rg=5 a.u. Rtnax = 3 3.U.

6.60 5.3090 (-1) 5.3087 (-1) 5.2734 (-1)

4.28 1.6550 (-2) 1.6559 (-2) 1.6461 (一 2)

2.96 1.4169 (-4) 1.4191 (一4) 1.4539 (-4)

1.64 4.9030 (-7) 4.9196 (-7) 4.8568 (一 7)

032 3.0432 (-10) 3.0756 (-10) 2.6981 (-10)

-2
«

흐

 d

aC. W. McCurdy and B. C. Garrett, J. Chem. Phys., 84, 2630 

(1986).A Propagation is from 一 Rg to +R* with 320 integration 

steps.
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Figure 1. Convergence of the reaction probability.

for Rmax=3 a.u., but overall, the convergence is very good 

for all the cases, the errors being less than 3%. The excep­

tion is the probability at E=0.32 kcal/mol evaluated with 

Rg=3 a.u. Inaccuracy in this case results from the fact 

that the energy is only 1/20 of the barrier height (6.6 

kcal/mol), and that the difference of the energy and the value 

of the potential at the matching point of 3 a.u. is only 0.1 

kcal/mol, which is too small for the WKB approximation to 

hold. Actually, the tunneling probability at this energy is 

only about 10"10. Hence matching point of Rg= 3 a.u. is 

sufficient for all purposes for H + H2 system.

Figure 1 shows the convergence of the reaction probability 

as a function of the position of the matching point at the 

energy of £=2.96 kcal. The classical turning point at this 

energy is 0.95 a.u. The reaction probability evaluated by our 

formalism converges at about Rmax=2 a.u. Figure 2 presents 

the reaction probability as a function of energy. The reaction 

probability is a monotonic increasing function of E, and at 

the energy of 6.6 kcal/mol, which is the barrier height of 

the system, the reaction probability is about 0.53. At the 

energy of £/卩허仙=1.5, the reaction probability is essentially 

unity. Although we choose an Eckart Barrier model for H+ 

H2 system for convenience, our procedure can be employ­

ed for any kind of potential surfaces. Also we believe that 

the accuracy of our formalism should be better for reactions 

between heavier systems.

Extensions to Multidimensional Systems. For multi­

dimensional reacting systems, the computations become

1.5 2.0
0.0--

0.0

Energy (E/Emax)

Figure 2. Reaction probability as a function of the energy.

much more complicated. Besides the problem of increasing 

number of channels, the choice of the coordinates for desc­

ribing the reactive scattering systems is a difficult problem. 

Even for the simplest multidimensional system, the collinear 

atom-diatom reactive collision, the "natural” reaction coor­

dinates are not obvious at 기 L For chemical reactions the 

use of Jacobi coordinates yields a diagonal form for the kine­

tic energy, but in those coordinates the Hamiltonian is not 

separable in both the reactant and product channels.8 Natural 

reaction coordinates used by Marcus et 기.23의 approach the 

Jacobi coordinates for reactant and product channels, but 

result in the first derivative terms that are awkward to deal 

with, in addition to being difficult to generalize to higher 

dimensional systems. On the other hand, when one tries 

to solve Schroedinger equations in different regimes of the 

configuration space using the locally appropriate coordinates, 

the procedure introduces a complicated wave function match­

ing procedure into the calculation. These problems arise 

from the necessity of the asymptotic analysis. The Jacobi 

coordinates are the most appropriate coordinate systems for 

the aymptotic analysis and different Jacobi coordinates must 

be used for reactants and product channels.

Since our approximate boundary conditions are locally de­

termined to be imposed well before the asymptotic region, 

asymptotic analyses are not needed in our formalism to eval­

uate the reaction probability. For collinear reactive scatter­

ing system A -+C, for instance, propagation of 

w7CB(r) is performed forward from a matching point in the 

reactant side to the activated complex region with respect 

to Ra-bc, while h(+\wKB (x) is propagated backward from 

a matching point in the product side with respect to Rab-c- 
Here Ra-bc is the distance of the atom A to the center of 

mass of BC, and similarly for Rabw Approximate boundary 

conditions developed by Singer et al. ,13 based on the multi­

channel WKB methods, may be very useful for these multi­

dimensional systems. Alternatively, one can use the coordi­

nates most appropriate for regimes near the activated com­

plex for the propagations of /if wkb^) and 矽％ wkbM, al­

though this choice may result in nondiagonal form for the 

kinetic energy operator. In any cases, neither the transfor­

mations between the coordinate systems nor the complicated 

matching procedures are needed in our formalism. Also our 

procedure only needs informations on the potential surfaces 
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near the activated complex region, since the semiclassical 

boundary conditions are imposed well before the asymptotic 

region. Optimal basis sets for reactant and product can be 

employed separately. As the matching points (where approxi­

mate boundary conditions are imposed) move toward the 

asymptotic regime, the accuracy of the reaction probability 

is systematically improved, an obvious advantage over the 

transition state theory, for which there is no systematic way 

of improving the accracy so that with sufficient computational 

efforts one is guaranteed of approaching the correct results.

Our procedure is similar to the detailed quantum transi­

tion state theory (DQTST) developed by Light and Altenber- 

ger-Siczek25,26 for reactive cross sections. They have replaced 

the product side potential surfaces by several model poten­

tials to evaluate the reaction probability. Although their re­

sults were good, the question remains in their procedure 

as to what kind of model potentials should be used. On the 

other hand, our approximate boundary conditions depends 

locally on the matching point, being independent of the poten­

tial surfaces beyond it. Hence we confine the quantum calcu­

lations to a limited region near the activated complex, while 

DQTST still necessitates propagation in the asymptotic re­

gion.

Conclusion

Our approximate scheme, in the spirit of early asymptotic 

analysis, has been shown to be a hi飙y accurate procedure 

for obtaining the matrix elements of Green's operator and 

its derivatives for evaluating the total reaction probability. 

Propagations are confined to a limited region near the acti­

vated complex. It is su^ested that coordinates most appro­

priate for reactants and product옹 can be used separately for 

a two-way propagation towards the activated complex region 

for multidimensional reactive scattering problems, obviating 

the need for coordinate transformation and complicated ma­

tching procedures. Results for collinear atom-diatom reac­

tions will be published in a separate work.
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