• Title/Summary/Keyword: asymptotic average shadowing property

Search Result 7, Processing Time 0.017 seconds

SOME SHADOWING PROPERTIES OF THE SHIFTS ON THE INVERSE LIMIT SPACES

  • Tsegmid, Nyamdavaa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.461-466
    • /
    • 2018
  • $Let\;f:X{\rightarrow}X$ be a continuous surjection of a compact metric space X and let ${\sigma}_f:X_f{\rightarrow}X_f$ be the shift map on the inverse limit space $X_f$ constructed by f. We show that if a continuous surjective map f has some shadowing properties: the asymptotic average shadowing property, the average shadowing property, the two side limit shadowing property, then ${\sigma}_f$ also has the same properties.

ASYMPTOTIC AVERAGE SHADOWING PROPERTY ON A CLOSED SET

  • Lee, Manseob;Park, Junmi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Let $f$ be a difeomorphism of a closed $n$ -dimensional smooth manifold M, and $p$ be a hyperbolic periodic point of $f$. Let ${\Lambda}(p)$ be a closed set which containing $p$. In this paper, we show that (i) if $f$ has the asymptotic average shadowing property on ${\Lambda}(p)$, then ${\Lambda}(p)$ is the chain component which contains $p$. (ii) suppose $f$ has the asymptotic average shadowing property on ${\Lambda}(p)$. Then if $f|_{\Lambda(p)}$ has the $C^{1}$-stably shadowing property then it is hyperbolic.

VARIOUS SHADOWING PROPERTIES FOR INVERSE LIMIT SYSTEMS

  • Lee, Manseob
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.657-661
    • /
    • 2016
  • Let $f:X{\rightarrow}X$ be a continuous surjection of a compact metric space and let ($X_f,{\tilde{f}}$) be the inverse limit of a continuous surjection f on X. We show that for a continuous surjective map f, if f has the asymptotic average, the average shadowing, the ergodic shadowing property then ${\tilde{f}}$ is topologically transitive.

SOME PROPERTIES OF STRONG CHAIN TRANSITIVE MAPS

  • Barzanouni, Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.951-965
    • /
    • 2019
  • Let $f:X{\rightarrow}X$ be a continuous map on a compact metric space (X, d) and for an arbitrary $x{\in}X$, $${\mathcal{SC}}_d(x,f):=\{y{\mid}x{\text{ can be strong }}d-{\text{chain to }}y\}$$. We give an example to show that ${\mathcal{SC}}_d(x,f)$ is dependent on the metric d on X but it is a closed and f-invariant set. We prove that if ${\mathcal{SC}}_d(x,f){\supseteq}{\Omega}(f)$ or f has the asymptotic-average shadowing property, then ${\mathcal{SC}}_d(x,f)=X$. Also, we show that if f has the shadowing property, then ${\lim}\;{\sup}_{n{\in}{\mathbb{N}}}\{f^n\}={\mathcal{SC}}_d(f)$ where ${\mathcal{SC}}_d(f)=\{(x,y){\mid}y{\in}{\mathcal{SC}}_d(x,f)\}$. For each $n{\in}{\mathbb{N}}$, we give an example in which ${\mathcal{SCR}}_d(f^n){\neq}{\mathcal{SCR}}_d(f)$. In spite of it, we prove that if $f^{-1}:(X,d){\rightarrow}(X,d)$ is an equicontinuous map, then ${\mathcal{SCR}}_d(f^n)={\mathcal{SCR}}_d(f)$ for all $n{\in}{\mathbb{N}}$.