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VARIOUS SHADOWING PROPERTIES FOR INVERSE

LIMIT SYSTEMS

Manseob Lee*

Abstract. Let f : X → X be a continuous surjection of a compact

metric space and let (Xf , f̃) be the inverse limit of a continuous
surjection f on X. We show that for a continuous surjective map
f , if f has the asymptotic average, the average shadowing, the

ergodic shadowing property then f̃ is topologically transitive.

1. Introduction

Let (X, d) be a compact metric space with metric d and let f : X → X
be a continuous surjective map. For δ > 0, a sequence of points {xi}∞i=0
in X is called a δ-pseudo orbit of f if d(f(xi), xi+1) < δ for all i ≥ 0. We
say that f has the shadowing property if for every ε > 0 there is δ > 0
such that for any δ-pseudo orbit {xi}∞i=0, there is a point y ∈ X such that
d(f i(y), xi) < ε for all i ≥ 0. The asymptotic average shadowing property
introduced by Gu [4]. A sequence {xi}∞i=0 is called an asymptotic average
pseudo orbit of f if

lim
n→∞

1

n

n−1∑
i=0

d(f(xi), xi+1) = 0.

A sequence {xi}∞i=0 is said to be asymptotic average shadowed in average
by the point z in X if

lim
n→∞

1

n

n−1∑
i=0

d(f i(z), xi) = 0.
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We say that f has the asymptotically average shadowing property if for
every asymptotic average pseudo orbit of f can be asymptotically shad-
owed in average by some point in X. The average shadowing property
was introduced by Blank [2] For δ > 0, a sequence {xi}∞i=0 of points in
X is called a δ-average pseudo orbit of f if there is N(δ) > 0 such that
for all n ≥ N, k ∈ N ∪ {0},

1

n

n−1∑
i=0

d(f(xi+k), xi+k+1) < δ.

We say that f has the average shadowing property if for any ε > 0 there is
a δ > 0 such that for every δ-average pseudo orbit {xi}∞i=0 is ε-shadowed
in average by some z ∈ X, that is,

lim sup
n→∞

1

n

n−1∑
i=0

d(f i(z), xi) < ε.

The notion of ergodic shadowing property for continuous onto maps
over compact metric spaces was defined by Fakhari and Ghane in [3].
For any δ > 0, a sequence ξ = {xi}∞i=0 is δ-ergodic pseudo orbit of f if
for Npn(ξ, f, δ) = {i : d(f(xi), xi+1) ≥ δ} ∩ {0, 1, . . . , n− 1},

lim
n→∞

#Npn(ξ, f, δ)

n
= 0.

We say that f has the ergodic shadowing property if for any ε > 0, there
is a δ > 0 such that for every δ-ergodic pseudo orbit ξ = {xi}∞i=0 of f
there is a point z ∈ X such that for Nsn(ξ, f, z, ε) = {i : d(f i(z), xi) ≥
ε} ∩ {0, 1, . . . , n− 1},

lim
n→∞

#Nsn(ξ, f, z, ε)

N
= 0.

A point p ∈ X is periodic if there is n > 0 such that fn(p) = p, where
n is called the prime period of p. For x ∈ X we define the stable set of x
as following: W s(x) = {y ∈ X : d(f i(x), f i(y))→ 0 as i→∞} and the
unstable set of x as following: W u(x) = {y ∈ X : d(f i(x), f i(y))→ 0 as
i→ −∞}. Then a point p is sink if W s(p) is a neighborhood of p in X.
A point p is source if W u(p) is a neighborhood of p in X.

For any δ > 0, a sequence {xi}i∈N∪{0} is called a δ pseudo orbit

of f if d(f(xi), xi+1) < δ for all i ∈ N ∪ {0}. We say that f is chain
transitive if for any δ > 0 and x, y ∈ X, there is a δ-pseudo orbit
{xi}ni=0(n ≥ 1) such that x0 = x and xn = y. The shadowing property
is not equal to the asymptotic average shadowing property, the average
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shadowing property, and the ergodic shadowing property. In fact, a map
f has the asymptotic average shadowing property, the average shadowing
property, the ergodic shadowing property then it is chain transitive.
Then the map f has neither sinks or sources (see [5]). A More-Smale
map have a sink and a source and it has the shadowing property. We
say that f is topologically transitive if for any open sets U and V , there
is n > 0 such that fn(U) ∩ V 6= ∅.

Let Xf = {(xj)∞j=0 : xj ∈ X, f(xj) = xj+1, j ≥ 0}. For a contin-

uous surjective map f : X → X, we define a map f̃ : Xf → Xf by

f̃((xj)
∞
j=0) = (f(xj)

∞
j=0). Then f̃ is called the shift map which is the

homeomorphim and f̃−1((xj)
∞
j=0) = (xj+1)

∞
j=0 for (xj) ∈ Xf . We say

that (Xf , f̃) is the inverse limit of (X, f). Define a metric d̃ for Xf by

d̃(x̃, ỹ) =
∞∑
i=0

d(xi, yi)

2i

for (xi)
∞
i=0, (yi)

∞
i=0 ∈ Xf . We say that f̃ is topologically transitive if for

any open sets Ũ and Ṽ in Xf there is n > 0 such that f̃n(Ũ)∩ Ṽ 6= ∅. By
Aoki and Hiraide [1] proved that a continuous surjective map f has the

shadowing property then f̃ has the shadowing property. In the paper, we
study that if a continuous surjective map f has the shadowing property

with various shadowing properties then the shift map f̃ is topologically
transitive. The following is the main theorem.

Theorem 1.1. A surjective continuous map f : X → X has the
shadowing property. If any of the following statements hold:

(a) f has the asymptotic average shadowing property,
(b) f has the average shadowing property,
(c) f has the ergodic shadowing property,

then f̃ : Xf → Xf is topologically transitive.

2. Proof of Theorem 1.1

For any δ > 0, a sequence {x̃i}i∈N∪{0} is called a δ-pseudo orbit of f

if d̃(f̃(x̃i), x̃i+1) < δ for all i ∈ N∪{0}. We say that f̃ is chain transitive
if for any δ > 0 and x̃, ỹ ∈ Xf , there is a δ-pseudo orbit {x̃i}ni=0(n ≥ 1)
such that x̃0 = x̃ and x̃n = ỹ.

Lemma 2.1. If a surjective continuous map f : X → X is chain

transitive then f̃ : Xf → Xf is chain transitive.
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Proof. Since f is chain transitive, for any xj , yj ∈ X(j ≥ 0), and
any ε > 0, there is a finite ε/3-pseudo orbit {xij}ni=0(n ≥ 1) such that

x0j = xj , x
n
j = yj and d(f(xij), x

i+1
j ) < ε/3 for i = 0, . . . , n − 1. In

particular, x00 = x, xn0 = y and d(f(xi), xi+1) < ε/3 for i = 0, . . . , n− 1.
Then for i = 0, . . . , n− 1, we have

d̃(f̃(x̃i), x̃i+1) =

∞∑
j=0

d(f(xij), x
i+1
j )

2j

=

∞∑
j=0

d(f(xij), x
i+1
j )

2j
≤ ε

3

∞∑
j=0

1

2j
=

2

3
ε < ε.

Thus {x̃i}ni=0(n ≥ 1) is a finite ε-pseudo orbit of f̃ which means that
it is chain transitive.

It is clear that if f is topologically transitive then it is chain tran-
sitive. But, the converse is not true. Indeed, an irrational rotation
map is topologically transitive. But, if an oriented preserving rotation
map which contains a fixed point then it is not topologically transitive.
However, it is chain transitive.

Lemma 2.2. If a surjective continuous map f : X → X is topologi-

cally transitive then f̃ : Xf → Xf is topologically transitive.

Proof. Let Ũ = (Uj) and Ṽ = (Vj) be open sets of Xf . Then we show

that there is n > 0 such that f̃n(Ũ)∩ Ṽ 6= ∅. Suppose, by contradiction,

that, for all k > 0 such that f̃k(Ũ) ∩ Ṽ = ∅. Since f̃(Ũ) = f̃((Uj)) =

(f(Uj)) and Ṽ = (Vj), we know that for all k > 0

f̃k(Ũ) ∩ Ṽ = (fk(Uj)) ∩ (Vj)

= (fk(U0), f
k(U1), . . . , ) ∩ (V0, V1, . . .)

= ∅.

Then for all k > 0 there is i > 0 such that fk(Ui) ∩ Vi = ∅. Since Uj

and Vj are arbitrarily open sets in X for all j ≥ 0 and f is topologically
transitive, there is n > 0 such that fn(Uj) ∩ Vj 6= ∅ for all j ≥ 0 which
is a contradiction.

Remark 2.3. Gu [4, Theorem 3.1] proved that if a map f has the
asymptotic average shadowing property then it is chain transitive, Park
and Zhang [6, Theorem 3.4] proved that if a map f has the average
shadowing property then it is chain transitive and Fakhari and Ghane[3,
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Lemma 3.1] proved that if a map f has the ergodic shadowing property
then it is chain transitive.

Lemma 2.4. Let f be a chain transitive map. If f has the shadowing
property then it is topologically transitive.

Proof. The proof is similar to [7, Lemma 2.2].

Proof of Theorem 1.1. Suppose that f has the asymptotic average
(average, ergodic) shadowing property. Then by Remark 2.3, the map

f is chain transitive. Since f is chain transitive, by Lemma 2.1 f̃ is
chain transitive. Since f has the shadowing property, by Lemma 2.4,

f is topologically transitive. Thus by Lemma 2.2, f̃ is topologically
transitive. �
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