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DECOMPOSITION PROPERTY FOR C1 GENERIC

DIFFEOMORPHISMS

Manseob Lee*

Abstract. C1 generically, if a diffeomorphism f : M → M of a
closed smooth Riemannian manifold M has the asymptotic average
shadowing property or the average shadowing property then f has
a decomposition property.

1. Introduction

Let M be a closed smooth Riemannian manifold without boundary
and let Diff(M) be the space of C1 diffeomorphisms of M . A closed f -
invariant set Λ is transitive if there is a point x ∈ Λ such that ω(x) = Λ,
where ω(x) is the omega limit set of x. A closed f -invariant set Λ ⊂M
is called basic if Λ is transitive, and the periodic points are dense. We
say that f has a decomposition property if the nonwandering set

M = Λ1 ∪ Λ2 ∪ · · · ∪ Λn,

where each Λi is a basic sets.
A closed f -invariant set Λ is hyperbolic if the tangent bundle TΛM

has a Df -invariant splitting Es ⊕ Eu and there exist constants C > 0
and 0 < λ < 1 such that

‖Dxf
n|Es

x
‖ ≤ Cλn and ‖Dxf

−n|Eu
x
‖ ≤ Cλn

for all x ∈ Λ and n ≥ 0. If Λ = M then we say that f is Anosov. We
say that f satisfies Axiom A if the nonwandering set Ω(f) = P (f) is
hyperbolic, where P (f) is the set of periodic points of f . Smale [21]
proved that if a diffeomorphim f satisfies Axiom A then f admits a
decomposition, that is, the nonwandering set Ω(f) = Λ1 ∪ Λ2 ∪ · · · ∪
Λn, where each Λi is basic sets. In dynamical systems, the shadowing
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properties and decomposition theorem are important concepts. For a
homeomorphism f : M →M of a compact metric space, Aoki [2] proved
that if the nonwandering set Ω(f) is expansive and has the shadowing
property then it admits a decomposition theorem. In the paper, we
consider that a types of the shadowing properties (asymptotic average
shadowing property, or the average shadowing property).

For δ > 0, a sequence {xi}i∈Z ⊂M is a δ-average pseudo orbit of f if
there is K = Kδ > 0 such that for all n ≥ K and k ∈ Z, we have

1

n

n−1∑
i=0

d(f(xi+k), xi+k+1) < δ.

We say that f has the average shadowing property if for any ε > 0
there is a δ > 0 such that for any δ-average pseudo orbit {xi}i∈Z ⊂ M
there is z ∈M such that

lim sup
n→∞

1

n

n−1∑
i=0

d(f i(z), xi) < ε and lim sup
n→−∞

1

n

n−1∑
i=0

d(f i(z), xi) < ε.

Blank [3] studied the average shadowing property, and many authors
published in [8, 9, 13, 15, 17, 18, 19, 20]. For instance, Sakai [20] proved
that for a surface, if a diffeomorphism f has the robustly average shad-
owing property then it is Anosov. Lee and Wen [18] proved that if a
diffeomorphism f has the robustly average shadowing property on tran-
sitive sets then it admits a dominated splitting.

A sequence {xi}i∈Z ⊂M is an asymptotically average pseudo orbit of
f if

lim
n→∞

1

2n+ 1

n∑
i=−n

d(f(xi), xi+1) = 0.

We say that f has the asymptotic average shadowing property if for any
asymptotically average pseudo orbit {xi} ⊂M of f there is z ∈M such
that

lim
n→∞

1

2n+ 1

n∑
i=−n

d(f i(z), xi) = 0.

Gu [5] studied the asymptotically average shadowing property, and
many authors published in [6, 7, 10, 11, 12, 13, 15, 16, 17]. For instance,
Honary and Bahabadi [6] proved that for a surface, if a diffeomorphism
f has the robustly asymptotically average shadowing property then it
is Anosov. Lee [12] proved that if a diffeomorphism f has the robustly
asymptotically average shadowing property on a chain transitive set then
it admits a dominated splitting.
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We say that a subset G ⊂ Diff(M) is residual if G contains the inter-
section of a countable family of open and dense subsets of Diff(M); in
this case G is dense in Diff(M). A property ”P” is said to be generic if
”P” holds for all diffeomorphisms which belong to some residual subset
of Diff(M). Lee [14] proved that C1 generically, if a diffeomorphism f
of a three dimensional manifold M has the asymptotic average shadow-
ing property or average shadowing property then it is Anosov. About
the results, we consider the average shadowing property ( the average
shadowing property) and the decomposition property, for a C1 generic
diffeomorphism. The following is a main theorem of this paper.

Theorem A For C1 generic f ∈ Diff(M), if f has the following prop-
erties,

(a) asymptotic average shadowing property;
(b) average shadowing property,

then f has a decomposition property.

2. Proof of Theorem A

An invariant closed set C ⊂ M is called a chain transitive if for any
δ > 0 and x, y ∈ C, there is a δ-pseudo orbit {xi}ni=0(n ≥ 1) ⊂ C such
that x0 = x and xn = y. We say that f is chain transitive if C = M.
It is clear that the transitive set Λ is the chain transitive set C, but
the converse is not true. Gu [5] proved that if a diffeomorphism f has
the asymptotic average shadowing property then it is chain transitive.
Park and Yong [19] proved that if a diffeomorphism f has the average
shadowing property then it is chain transitive.

Lemma 2.1. [19, 5] If f has the asymptotic average shadowing prop-
erty or the average shadowing property then it is chain transitive.

A periodic point p of f is a sink if all its eigenvalues have modulus
less than 1, and p is a source if all its eigenvalues have modulus greater
than 1.

Lemma 2.2. [14, Lemma 2.1] If f is chain transitive then f has neither
sinks nor sources.

Let p be a hyperbolic periodic point of f. Denoted by

H(p) = W s(p) tW u(p),
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where W s(p) is the stable manifold of f and W u(p) is the unstable
manifold of p. A point x ∈M is called chain recurrent if for any δ > 0,
there is a finite δ-pseudo orbit {xi}ni=0(n ≥ 1) such that x0 = x and
xn = x. Denote by CR(f) the set of all chain recurrent points of f. We
define a relation ! on CR(f) by x! y if for any δ > 0, there is a
finite δ-pseudo orbit {xi}ni=0 such that x0 = x and xn = y and a finite δ-
pseudo orbit {wi}ni=0 such that w0 = y and wn = x. Then we know that
the relation ! is an equivalence relation on CR(f). The equivalence
classes are called the chain recurrence classes of f , denote by C. Note
that if the class C have a hyperbolic periodic point p then we denote as
C(p). It is known that H(p) ⊂ C(p). Bonatti and Crovisier [4] proved
the following lemma.

Lemma 2.3. There is a residual set G1 ⊂ Diff(M) such that (i)

P (f) = CR(f), and (ii) a homoclinic class H(p) which contains a hyper-
bolic periodic point p is a chain recurrence class C(p) which contains a
hyperbolic periodic point p.

For f ∈ Diff(M), we say that a compact f -invariant set Λ admits a
dominated splitting if the tangent bundle TΛM has a continuous Df -
invariant splitting E⊕F and there exist C > 0, 0 < λ < 1 such that for
all x ∈ Λ and n ≥ 0, we have

||Dfn|E(x)|| · ||Df−n|F (fn(x))|| ≤ Cλn.

Theorem 2.4. [1, Theorem 2.2] There is a residual set G2 ⊂ Diff(M)
such that either (a) or (b) holds:

(a) the nonwandering set Ω(f) admits a decomposition

Ω(f) = Λ1 ∪ Λ2 ∪ · · ·Λk,
where the sets Λi are pairwise disjoint compact f -invariant, each
of which is the union of chain recurrence classes and admits a some
dominated splitting;

(b) there are infinitely many periodic sinks or sources of f.

Proof of Theorem A (a). Let f ∈ G1 ∩ G2 have the asymptotic aver-
age shadowing property. Then by Lemma 2.1, f is chain transitive and
so, CR(f) = M. Since f is chain transitive, according to Lemma 2.2,
f does not contains sinks or sources. Thus by Theorem 2.4 (a), Ω(f)
admits a decomposition, that is, Ω(f) = Λ1 ∪Λ2 ∪ · · ·Λk, where the sets
Λi are pairwise disjoint compact f -invariant, each of which is the union
of chain recurrence classes. Since f ∈ G1 and Λi is a chain recurrence
class which contains a hyperbolic periodic point p, Λi is a homoclinic
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class H(p) which contains a hyperbolic periodic point p. By Smale’s

homoclinic transverse theorem, H(p) = {q ∈ P (f) : q ∼ p}, where q ∼ p
means that W s(p) t W u(q) 6= ∅ and W u(p) t W s(q) 6= ∅. Since H(p)
is closed, transitive and f -invariant set, we know that each Λi is a basic
set. Thus if f ∈ G1 ∩ G2 have the asymptotic average shadowing prop-
erty then Ω(f) = CR(f) = M and so, f has a decomposition property. �

Proof of Theorem A (b). Letf ∈ G1∩G2 have the average shadowing
property. Then by Lemma 2.1, f is chain transitive. Since f is chain
transitive, according to Lemma 2.2, f does not contains sinks or sources.
Thus by Theorem 2.4 (a), Ω(f) admits a decomposition theorem. As in
proof of the previous case, we have that f has a decomposition property.
�

For a C1 generic f ∈ Diff(M), a transitive f is not expansive, if f
has the shadowing property then f has the decomposition property. It
is the following.

Corollary 2.5. For C1 generic f ∈ Diff(M), if f is transitive and
has the shadowing property then f has a decomposition property.

Proof. Let f ∈ G1 ∩ G2 have the shadowing property. Since f is transi-
tive, f has neither sinks nor sources. Then the nonwandering set Ω(f)
admits a decomposition

Ω(f) = Λ1 ∪ Λ2 ∪ · · ·Λk.
Here each sets Λi are basic sets. Since f is transitive, Ω(f) = M and
so, f has a decomposition property. �
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