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SOME SHADOWING PROPERTIES OF THE SHIFTS ON

THE INVERSE LIMIT SPACES

Nyamdavaa Tsegmid*

Abstract. Let f : X → X be a continuous surjection of a compact
metric space X and let σf : Xf → Xf be the shift map on the inverse

limit space Xf constructed by f . We show that if a continuous surjective
map f has some shadowing properties: the asymptotic average shadowing

property, the average shadowing property, the two side limit shadowing

property, then σf also has the same properties.

1. Introduction and preliminaries

Inverse limit is a useful tool to study the dynamical properties of smooth
systems; some dynamical properties of can be interpreted by the topological
structures of the inverse limit dynamical system; for example, Chen and Li [4]
proved that (X, f) has the shadowing property if and only if (lim←(X, f), σf )
has so. Li [8] proved that some dynamical properties hold simultaneously for
both f and σf . Also A. Barzanouni [2] show that the relationship between
ergodic shadowing property and inverse shadowing property for a surjective
continuous map on a compact metric space and shift map on the inverse limit
space. M. Lee [7] show that f has the asymptotic average shadowing, the
average shadowing, the ergodic shadowing property then σf is topologically
transitive.

In this paper, we discuss (X, f) has the two-sided limit shadowing prop-
erty, the average shadowing property and the asymptotic average shadowing
property then shift map on the inverse limit space has so.

Let X be a compact metric space with metric d and XZ denote the product
topological space XZ = {(xi) : xi ∈ X, i ∈ Z}. Then XZ is compact. We define

a compatible metric d̃ for XZ by

d̃((xi)(yi)) =

∞∑
i=−∞

d(xi, yi)

2|i|
.
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A homeomorphism σf : XZ → XZ, which is defined by

σf ((xi)) = (yi) and yi = xi+1 for all i ∈ Z,

is called the shift map.
For f : X → X a continuous surjection, we let,

Xf = {(xi) : xi ∈ X, and f(xi) = xi+1, i ∈ Z}.

Then Xf is a closed subset of XZ. Moreover we have σf ((xi)) = (f(xi)) for all
(xi) ∈ Xf , and so Xf is σf -invariant, i.e. σf (Xf ) = Xf .

The space Xf is called the inverse limit space constructed by f . The re-
striction σf = σf |Xf

: Xf → Xf is called the shift map determined by f .

A sequence (xi)i∈Z of points X is a two-sided limit pseudo orbit for f if it
satisfying

d(f(xi), xi+1)→ 0, as |i| → ∞.
A sequence (xi)i∈Z of points X is two-sided limit shadowed by y ∈ X if it
satisfying

d(f i(y), xi)→ 0, as |i| → ∞.
We say that f has the two-sided limit shadowing property if every two-sided
limit pseudo-orbit is two-sided limit shadowed.

For δ > 0, a sequence (xi)i∈Z of points in X is a δ-average pseudo orbit for
f if there is an integer N = N(δ) > 0 such that:

1

n

n∑
i=1

d(f(xi+k), xi+k+1) < δ, for alln ≥ N, k ∈ Z.

A sequence (xi)i∈Z of points in X is ε- shadowed in average by y ∈ X if

lim sup
n→∞

1

n

n∑
i=1

d(f i(y), xi) < ε.

We say that f has the average shadowing property if for every ε > 0 there is
δ > 0 such that every δ-average pseudo orbit of f is ε-shadowed on average by
some point in X.

A sequence (xi)i∈Z of points in X is a δ-asymptotic average pseudo orbit for
f if there is an integer N = N(δ) > 0 such that:

1

n

n∑
i=1

d(f(xi+k), xi+k+1)→ 0, for alln ≥ N, k ∈ Z.

A sequence (xi)i∈Z of points X is ε-asymptotically shadowed in average by
y ∈ X if

lim sup
n→∞

1

n

n∑
i=1

d(f i(y), xi)→ 0.

We say that f has the asymptotic average shadowing property provided that
every asymptotic average pseudo-orbit of f is asymptotically shadowed in av-
erage by some point in X. We say that a finite δ-pseudo orbit {xi}ki=0 of f is
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a δ-chain from x0 to xk with length k+ 1. A non-empty subset A of X is said
to be chain transitive if for any x, y ∈ A and any δ > 0 there is a δ-chain of f
from x to y. A map f is said to be chain transitive if X is a chain transitive
set.

Theorem 1.1. [5, Theorem 3.1] Let X be a compact metric space and
f be a continuous map from X onto itself. If f has the asymptotic average
shadowing property, then f is chain transitive.

2. Main results

Theorem 2.1. Let f : X → X be a continuous surjective map on a
compact metric space X.

1. If f has average shadowing property, then the shift map σf on the inverse
limit space Xf has average shadowing property.

2. If f has asymptotic average shadowing property, then the shift map σf on
the inverse limit space Xf has asymptotic average shadowing property.

3. If f has two-side limit shadowing property, then the shift map σf on the
inverse limit space Xf has two-side limit shadowing property.

Proof. Proof of 1. Let ε > 0 and D = diamX. Choose N > 0 with
D/2N−2 < ε, and let γ > 0 be a number such that

d(x, y) ≤ γ ⇒ max
0≤i≤2N

d(f i(x), f i(y)) ≤ ε

8
.

By average shadowing property of f there is δ1 > 0 such that any δ1-average
pseudo orbit of f is γ-average shadowed. Choose δ2 > 0 with 0 < 2Nδ2 < δ1.
Define a sequence {wn

i }n,i∈Z is a δ2-average pseudo orbit of σf in Xf such that
{wn

i }n∈Z is a periodic δ1-average pseudo orbit of f for each i ∈ Z.

Then we have,

δ2 >
1

n

n−1∑
i=0

d̃
(
σf (wk+i

j ), wk+i+1
j

)
=

1

n

n−1∑
i=0

(
∞∑

j=−∞

d(f(wk+i
j ),wk+i+1

j )
2|j|

)
≥ 1

n

n−1∑
i=0

d(f(wk+i
−N ),wk+i+1

−N )
2|N|

, n ≥ N.

Since {wn
−N}n∈Z is a periodic δ1-average pseudo orbit of f , {wn

i }n,i∈Z δ2-
average pseudo orbit of σf . Also we can find z ∈ X, such that n ≥ N

lim sup
n→∞

1

n

n−1∑
i=0

d(f i(z), wi
−N ) < γ.
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We put zi−N = f i(z) for i ≥ 0 and take zi−N ∈ f−1(zi+1−N ) for i < 0. Then
z̃ = {zi}i∈Z ∈ Xf and

lim sup
n→∞

1

n

n−1∑
i=0

d̃
(
σi
f (zj), w

i
j

)
= lim sup

n→∞

1

n

n−1∑
i=0

(
∞∑

j=−∞

d(fi(zj),w
i
j)

2|j|

)

= lim sup
n→∞

1

n

n−1∑
i=0

(
N∑

j=−N

d(fi(zj),w
i
j)

2|j|
+
−N−1∑
j=−∞

d(fi(zj),w
i
j)

2|j|
+

∞∑
j=N+1

d(fi(zj),w
i
j)

2|j|

)
≤ 3ε

8
+
ε

8
+
ε

8
< ε.

Hence {wn
i }n,i∈Z is a δ2- average pseudo orbit of σf is ε- shadowed in average

by z̃ ∈ Xf .
Proof of 2. Let D = diam(X) and ε > 0. Choose N > 0 with D/2N−2 < ε,

and let γ > 0 be a number such that

d(x, y) < γ → 0 ⇒ max
0≤i≤2N

d(f i(x), f i(y)) ≤ ε

8
→ 0.

Since asymptotic average shadowing property of f , there is δ1 > 0 such that any
δ1-asymptotic average pseudo orbit of f is γ-asymptotically shadowed. Choose
δ2 > 0 with 0 < 2Nδ2 < δ1. Define a sequence {wn

i }n,i∈Z is a δ2-asymptotic
average pseudo orbit of σf in Xf such that {wn

i }n∈Z is δ1-asymptotic average
pseudo orbit of f for all i ∈ Z. Then

δ2 >
1

n

n−1∑
i=0

d̃
(
σf (wk+i

j ), wk+i+1
j

)
=

1

n

n−1∑
i=0

(
∞∑

j=−∞

d(f(wk+i
j ),wk+i+1

j )
2|j|

)
≥ 1

n

n−1∑
i=0

d(f(wk+i
−N ),wk+i+1

−N )
2|N|

.

⇒ δ1 > 2|N |δ2 ≥
1

n

n−1∑
i=0

d
(
f(wk+i

−N ), wk+i+1
−N

)
→ 0.

Since {wn
−N}n∈Z is a δ1-asymptotic average pseudo orbit of f, {wn

i }n,i∈Z is a
δ2-asymptotic average pseudo orbit of σf . Thus we can find z ∈ X, such that
n ≥ N

lim sup
n→∞

1

n

n−1∑
i=0

d(f i(z), wi
−N )→ 0.

We put zi−N = f i(z) for i ≥ 0 and take zi−N ∈ f−1(zi+1−N ) for i < 0.
Then z̃ = {zi}i∈Z ∈ Xf and

lim sup
n→∞

1

n

n−1∑
i=0

d̃
(
σi
f (zj), w

i
j

)
= lim sup

n→∞

1

n

n−1∑
i=0

(
∞∑

j=−∞

d(fi(zj),w
i
j)

2|j|

)

= lim sup
n→∞

1

n

n−1∑
i=0

(
N∑

j=−N

d(fi(zj),w
i
j)

2|j|
+
−N−1∑
j=−∞

d(fi(zj),w
i
j)

2|j|
+

∞∑
j=N+1

d(fi(zj),w
i
j)

2|j|

)
≤ 3ε

8
+
ε

8
+
ε

8
→ 0.
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Hence {wn
i }n,i∈Z is a δ2-asymptotic average pseudo orbit of σf is ε- asymptot-

ically shadowed in average by z̃ ∈ Xf .
Proof of 3. Let D = diam(X) and ε > 0. let |k| > N and γ > 0 be a

number such that

d(x, y) < γ =
D

2|k|
⇒ max

0≤i≤2N
d(f i(x), f i(y)) ≤ ε

8
→ 0.

Define a sequence {wn
i }n,i∈Z is a two-sided limit pseudo-orbit of σf in Xf such

that {wn
i }n∈Z is a two-sided limit pseudo-orbit of f for all i ∈ Z. Then we have

d̃(σf (xni , x
n+1
i ) ≥

d(f(xn−N ), xn+1
−N )

2N
.

Since {xn−N}n∈Z is a two-sided limit pseudo orbit of f , {wn
i }n∈Z is a two-sided

limit pseudo-orbit of σf . Then we can find z ∈ X such that d(fn(z), xn−N ) = 0
when |n| → ∞.

We put zi−N = f i(z) for i ≥ 0 and take zi−N ∈ f−1(zi+1−N ) for i < 0.
Then z̃ = {zi}i∈Z ∈ Xf and

d̃
(
σi
f (zj), w

i
j

)
=

∞∑
j=−∞

d(fi(zj),w
i
j)

2|j|

=
N∑

j=−N

d(fi(zj),w
i
j)

2|j|
+
−N−1∑
j=−∞

d(fi(zj),w
i
j)

2|j|
+

∞∑
j=N+1

d(fi(zj),w
i
j)

2|j|

≤ 3ε

8
+
ε

8
+
ε

8
→ 0.

Hence {wn
i }n,i∈Z two-sided limit pseudo-orbit of σf is two-sided limit shadowed

by z̃ ∈ Xf .

Corollary 2.2. If a continuous map f has asymptotic average shadowing
property, then the shift map σf on the inverse limit spaceXf is chain transitive.

Proof. By 2. of Theorem 2.1, f has asymptotic average shadowing property,
then σf has asymptotic average shadowing property, so by Theorem 1.1, σf is
chain transitive.

Corollary 2.3. [7, Remark 2.3] If surjective continuous map f has average
shadowing property, then the shift map σf on the inverse limit spaceXf is chain
transitive.

Corollary 2.4. If homeomorphism f of a compact metric space has two-
sided limit shadowing property, then the shift map σf on the inverse limit
space Xf has average shadowing and asymptotic average shadowing property.
Moreover, σf is chain transitive.

Proof. By [3, Theorem B], f has two-sided limit shadowing property, then
f has average shadowing and asymptotic average shadowing property, so by
Theorem 2.1, σf has average shadowing and asymptotic average shadowing
property. Then by Corollary 2.2 and Corollary 2.3, σf is chain transitive.
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