JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **31**, No. 4, November 2018 http://dx.doi.org/10.14403/jcms.2018.31.1.461

SOME SHADOWING PROPERTIES OF THE SHIFTS ON THE INVERSE LIMIT SPACES

Nyamdavaa Tsegmid*

ABSTRACT. Let $f: X \to X$ be a continuous surjection of a compact metric space X and let $\sigma_f: X_f \to X_f$ be the shift map on the inverse limit space X_f constructed by f. We show that if a continuous surjective map f has some shadowing properties: the asymptotic average shadowing property, the average shadowing property, the two side limit shadowing property, then σ_f also has the same properties.

1. Introduction and preliminaries

Inverse limit is a useful tool to study the dynamical properties of smooth systems; some dynamical properties of can be interpreted by the topological structures of the inverse limit dynamical system; for example, Chen and Li [4] proved that (X, f) has the shadowing property if and only if $(\lim_{\leftarrow} (X, f), \sigma_f)$ has so. Li [8] proved that some dynamical properties hold simultaneously for both f and σ_f . Also A. Barzanouni [2] show that the relationship between ergodic shadowing property and inverse shadowing property for a surjective continuous map on a compact metric space and shift map on the inverse limit space. M. Lee [7] show that f has the asymptotic average shadowing, the average shadowing, the ergodic shadowing property then σ_f is topologically transitive.

In this paper, we discuss (X, f) has the two-sided limit shadowing property, the average shadowing property and the asymptotic average shadowing property then shift map on the inverse limit space has so.

Let X be a compact metric space with metric d and $X^{\mathbb{Z}}$ denote the product topological space $X^{\mathbb{Z}} = \{(x_i) : x_i \in X, i \in \mathbb{Z}\}$. Then $X^{\mathbb{Z}}$ is compact. We define a compatible metric \tilde{d} for $X^{\mathbb{Z}}$ by

$$\tilde{d}((x_i)(y_i)) = \sum_{i=-\infty}^{\infty} \frac{d(x_i, y_i)}{2^{|i|}}.$$

Received August 15, 2018; Accepted October 24, 2018.

²⁰¹⁰ Mathematics Subject Classification: Primary 37C50, $54\mathrm{H20}$.

Key words and phrases: inverse limit space, shift map, two-sided limit, average shadowing, asymptotic average shadowing property.

^{*}The author was supported by the second stage of Brain Korea 21 project.

Nyamdavaa Tsegmid

A homeomorphism $\sigma_f : X^{\mathbb{Z}} \to X^{\mathbb{Z}}$, which is defined by $\sigma_f((x_i)) = (y_i)$ and $y_i = x_{i+1}$ for all $i \in \mathbb{Z}$,

is called the shift map.

For $f: X \to X$ a continuous surjection, we let,

$$X_f = \{(x_i) : x_i \in X, \text{ and } f(x_i) = x_{i+1}, i \in \mathbb{Z}\}.$$

Then X_f is a closed subset of $X^{\mathbb{Z}}$. Moreover we have $\sigma_f((x_i)) = (f(x_i))$ for all $(x_i) \in X_f$, and so X_f is σ_f -invariant, i.e. $\sigma_f(X_f) = X_f$.

The space X_f is called the inverse limit space constructed by f. The restriction $\sigma_f = \sigma_f|_{X_f} : X_f \to X_f$ is called the shift map determined by f.

A sequence $(x_i)_{i \in \mathbb{Z}}$ of points X is a two-sided limit pseudo orbit for f if it satisfying

$$d(f(x_i), x_{i+1}) \to 0$$
, as $|i| \to \infty$.

A sequence $(x_i)_{i \in \mathbb{Z}}$ of points X is two-sided limit shadowed by $y \in X$ if it satisfying

$$d(f^i(y), x_i) \to 0$$
, as $|i| \to \infty$.

We say that f has the *two-sided limit shadowing property* if every two-sided limit pseudo-orbit is two-sided limit shadowed.

For $\delta > 0$, a sequence $(x_i)_{i \in \mathbb{Z}}$ of points in X is a δ -average pseudo orbit for f if there is an integer $N = N(\delta) > 0$ such that:

$$\frac{1}{n}\sum_{i=1}^{n} d(f(x_{i+k}), x_{i+k+1}) < \delta, \quad \text{for all } n \ge N, k \in \mathbb{Z}.$$

A sequence $(x_i)_{i \in \mathbb{Z}}$ of points in X is ε - shadowed in average by $y \in X$ if

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d(f^{i}(y), x_{i}) < \varepsilon$$

We say that f has the *average shadowing property* if for every $\varepsilon > 0$ there is $\delta > 0$ such that every δ -average pseudo orbit of f is ε -shadowed on average by some point in X.

A sequence $(x_i)_{i \in \mathbb{Z}}$ of points in X is a δ -asymptotic average pseudo orbit for f if there is an integer $N = N(\delta) > 0$ such that:

$$\frac{1}{n}\sum_{i=1}^{n}d(f(x_{i+k}), x_{i+k+1}) \to 0, \quad \text{for all } n \ge N, k \in \mathbb{Z}.$$

A sequence $(x_i)_{i \in \mathbb{Z}}$ of points X is ε -asymptotically shadowed in average by $y \in X$ if

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^n d(f^i(y), x_i) \to 0.$$

We say that f has the asymptotic average shadowing property provided that every asymptotic average pseudo-orbit of f is asymptotically shadowed in average by some point in X. We say that a finite δ -pseudo orbit $\{x_i\}_{i=0}^k$ of f is

462

a δ -chain from x_0 to x_k with length k + 1. A non-empty subset A of X is said to be *chain transitive* if for any $x, y \in A$ and any $\delta > 0$ there is a δ -chain of f from x to y. A map f is said to be *chain transitive* if X is a chain transitive set.

THEOREM 1.1. [5, Theorem 3.1] Let X be a compact metric space and f be a continuous map from X onto itself. If f has the asymptotic average shadowing property, then f is chain transitive.

2. Main results

THEOREM 2.1. Let $f : X \to X$ be a continuous surjective map on a compact metric space X.

- 1. If f has average shadowing property, then the shift map σ_f on the inverse limit space X_f has average shadowing property.
- 2. If f has asymptotic average shadowing property, then the shift map σ_f on the inverse limit space X_f has asymptotic average shadowing property.
- 3. If f has two-side limit shadowing property, then the shift map σ_f on the inverse limit space X_f has two-side limit shadowing property.

Proof. Proof of 1. Let $\varepsilon > 0$ and D = diam X. Choose N > 0 with $D/2^{N-2} < \varepsilon$, and let $\gamma > 0$ be a number such that

$$d(x,y) \le \gamma \Rightarrow \max_{0 \le i \le 2N} d(f^i(x), f^i(y)) \le \frac{\varepsilon}{8}.$$

By average shadowing property of f there is $\delta_1 > 0$ such that any δ_1 -average pseudo orbit of f is γ -average shadowed. Choose $\delta_2 > 0$ with $0 < 2^N \delta_2 < \delta_1$. Define a sequence $\{w_i^n\}_{n,i\in\mathbb{Z}}$ is a δ_2 -average pseudo orbit of σ_f in X_f such that $\{w_i^n\}_{n\in\mathbb{Z}}$ is a periodic δ_1 -average pseudo orbit of f for each $i \in \mathbb{Z}$.

Then we have,

$$\begin{split} \delta_2 &> \frac{1}{n} \sum_{i=0}^{n-1} \tilde{d} \left(\sigma_f(w_j^{k+i}), w_j^{k+i+1} \right) &= \frac{1}{n} \sum_{i=0}^{n-1} \left(\sum_{j=-\infty}^{\infty} \frac{d \left(f(w_j^{k+i}), w_j^{k+i+1} \right)}{2^{|j|}} \right) \\ &\geq \frac{1}{n} \sum_{i=0}^{n-1} \frac{d \left(f(w_{-N}^{k+i}), w_{-N}^{k+i+1} \right)}{2^{|N|}}, \quad n \ge N. \end{split}$$

Since $\{w_{-N}^n\}_{n\in\mathbb{Z}}$ is a periodic δ_1 -average pseudo orbit of f, $\{w_i^n\}_{n,i\in\mathbb{Z}}$ δ_2 average pseudo orbit of σ_f . Also we can find $z \in X$, such that $n \ge N$

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d(f^i(z), w^i_{-N}) < \gamma.$$

Nyamdavaa Tsegmid

We put $z_{i-N} = f^i(z)$ for $i \ge 0$ and take $z_{i-N} \in f^{-1}(z_{i+1-N})$ for i < 0. Then $\tilde{z} = \{z_i\}_{i \in \mathbb{Z}} \in X_f$ and

$$\begin{split} &\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \tilde{d} \left(\sigma_f^i(z_j), w_j^i \right) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \left(\sum_{j=-\infty}^{\infty} \frac{d(f^i(z_j), w_j^i)}{2^{|j|}} \right) \\ &= \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \left(\sum_{j=-N}^{N} \frac{d(f^i(z_j), w_j^i)}{2^{|j|}} + \sum_{j=-\infty}^{-N-1} \frac{d(f^i(z_j), w_j^i)}{2^{|j|}} + \sum_{j=N+1}^{\infty} \frac{d(f^i(z_j), w_j^i)}{2^{|j|}} \right) \\ &\leq \frac{3\varepsilon}{8} + \frac{\varepsilon}{8} + \frac{\varepsilon}{8} < \varepsilon. \end{split}$$

Hence $\{w_i^n\}_{n,i\in\mathbb{Z}}$ is a δ_2 - average pseudo orbit of σ_f is ε - shadowed in average by $\tilde{z} \in X_f$.

Proof of 2. Let D = diam(X) and $\varepsilon > 0$. Choose N > 0 with $D/2^{N-2} < \varepsilon$, and let $\gamma > 0$ be a number such that

$$d(x,y) < \gamma \to 0 \quad \Rightarrow \quad \max_{0 \le i \le 2N} d(f^i(x), f^i(y)) \le \frac{\varepsilon}{8} \to 0.$$

Since asymptotic average shadowing property of f, there is $\delta_1 > 0$ such that any δ_1 -asymptotic average pseudo orbit of f is γ -asymptotically shadowed. Choose $\delta_2 > 0$ with $0 < 2^N \delta_2 < \delta_1$. Define a sequence $\{w_i^n\}_{n,i\in\mathbb{Z}}$ is a δ_2 -asymptotic average pseudo orbit of σ_f in X_f such that $\{w_i^n\}_{n\in\mathbb{Z}}$ is δ_1 -asymptotic average pseudo orbit of f for all $i \in \mathbb{Z}$. Then

$$\begin{split} \delta_2 > \frac{1}{n} \sum_{i=0}^{n-1} \tilde{d} \left(\sigma_f(w_j^{k+i}), w_j^{k+i+1} \right) &= \frac{1}{n} \sum_{i=0}^{n-1} \left(\sum_{j=-\infty}^{\infty} \frac{d \left(f(w_j^{k+i}), w_j^{k+i+1} \right)}{2^{|j|}} \right) \\ &\geq \frac{1}{n} \sum_{i=0}^{n-1} \frac{d \left(f(w_{-N}^{k+i}), w_{-N}^{k+i+1} \right)}{2^{|N|}}. \\ &\Rightarrow \delta_1 > 2^{|N|} \delta_2 \geq \frac{1}{n} \sum_{i=0}^{n-1} d \left(f(w_{-N}^{k+i}), w_{-N}^{k+i+1} \right) \to 0. \end{split}$$

Since $\{w_{-N}^n\}_{n\in\mathbb{Z}}$ is a δ_1 -asymptotic average pseudo orbit of f, $\{w_i^n\}_{n,i\in\mathbb{Z}}$ is a δ_2 -asymptotic average pseudo orbit of σ_f . Thus we can find $z \in X$, such that $n \geq N$

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d(f^i(z), w^i_{-N}) \to 0.$$

We put $z_{i-N} = f^i(z)$ for $i \ge 0$ and take $z_{i-N} \in f^{-1}(z_{i+1-N})$ for i < 0. Then $\tilde{z} = \{z_i\}_{i \in \mathbb{Z}} \in X_f$ and

$$\begin{split} &\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \tilde{d} \left(\sigma_{f}^{i}(z_{j}), w_{j}^{i} \right) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \left(\sum_{j=-\infty}^{\infty} \frac{d(f^{i}(z_{j}), w_{j}^{i})}{2^{|j|}} \right) \\ &= \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \left(\sum_{j=-N}^{N} \frac{d(f^{i}(z_{j}), w_{j}^{i})}{2^{|j|}} + \sum_{j=-\infty}^{-N-1} \frac{d(f^{i}(z_{j}), w_{j}^{i})}{2^{|j|}} + \sum_{j=N+1}^{\infty} \frac{d(f^{i}(z_{j}), w_{j}^{i})}{2^{|j|}} \right) \\ &\leq \frac{3\varepsilon}{8} + \frac{\varepsilon}{8} + \frac{\varepsilon}{8} \to 0. \end{split}$$

464

Hence $\{w_i^n\}_{n,i\in\mathbb{Z}}$ is a δ_2 -asymptotic average pseudo orbit of σ_f is ε - asymptotically shadowed in average by $\tilde{z} \in X_f$.

Proof of 3. Let D = diam(X) and $\varepsilon > 0$. let |k| > N and $\gamma > 0$ be a number such that

$$d(x,y) < \gamma = \frac{D}{2^{|k|}} \quad \Rightarrow \quad \max_{0 \le i \le 2N} d(f^i(x), f^i(y)) \le \frac{\varepsilon}{8} \to 0.$$

Define a sequence $\{w_i^n\}_{n,i\in\mathbb{Z}}$ is a two-sided limit pseudo-orbit of σ_f in X_f such that $\{w_i^n\}_{n\in\mathbb{Z}}$ is a two-sided limit pseudo-orbit of f for all $i\in\mathbb{Z}$. Then we have

$$\tilde{d}(\sigma_f(x_i^n, x_i^{n+1}) \ge \frac{d(f(x_{-N}^n), x_{-N}^{n+1})}{2^N}.$$

Since $\{x_{-N}^n\}_{n\in\mathbb{Z}}$ is a two-sided limit pseudo orbit of f, $\{w_i^n\}_{n\in\mathbb{Z}}$ is a two-sided limit pseudo-orbit of σ_f . Then we can find $z \in X$ such that $d(f^n(z), x_{-N}^n) = 0$ when $|n| \to \infty$.

We put $z_{i-N} = f^i(z)$ for $i \ge 0$ and take $z_{i-N} \in f^{-1}(z_{i+1-N})$ for i < 0. Then $\tilde{z} = \{z_i\}_{i \in \mathbb{Z}} \in X_f$ and

$$\begin{split} \tilde{d}\left(\sigma_{f}^{i}(z_{j}), w_{j}^{i}\right) &= \sum_{j=-\infty}^{\infty} \frac{d\left(f^{i}(z_{j}), w_{j}^{i}\right)}{2^{|j|}} \\ &= \sum_{j=-N}^{N} \frac{d\left(f^{i}(z_{j}), w_{j}^{i}\right)}{2^{|j|}} + \sum_{j=-\infty}^{-N-1} \frac{d\left(f^{i}(z_{j}), w_{j}^{i}\right)}{2^{|j|}} + \sum_{j=N+1}^{\infty} \frac{d\left(f^{i}(z_{j}), w_{j}^{i}\right)}{2^{|j|}} \\ &\leq \frac{3\varepsilon}{8} + \frac{\varepsilon}{8} + \frac{\varepsilon}{8} \to 0. \end{split}$$

Hence $\{w_i^n\}_{n,i\in\mathbb{Z}}$ two-sided limit pseudo-orbit of σ_f is two-sided limit shadowed by $\tilde{z} \in X_f$.

COROLLARY 2.2. If a continuous map f has asymptotic average shadowing property, then the shift map σ_f on the inverse limit space X_f is chain transitive.

Proof. By 2. of Theorem 2.1, f has asymptotic average shadowing property, then σ_f has asymptotic average shadowing property, so by Theorem 1.1, σ_f is chain transitive.

COROLLARY 2.3. [7, Remark 2.3] If surjective continuous map f has average shadowing property, then the shift map σ_f on the inverse limit space X_f is chain transitive.

COROLLARY 2.4. If homeomorphism f of a compact metric space has twosided limit shadowing property, then the shift map σ_f on the inverse limit space X_f has average shadowing and asymptotic average shadowing property. Moreover, σ_f is chain transitive.

Proof. By [3, Theorem B], f has two-sided limit shadowing property, then f has average shadowing and asymptotic average shadowing property, so by Theorem 2.1, σ_f has average shadowing and asymptotic average shadowing property. Then by Corollary 2.2 and Corollary 2.3, σ_f is chain transitive. \Box

Nyamdavaa Tsegmid

References

- [1] N. Aoki and K. Hiriade, *Topological Theory of Dynamical Systems*, Recent Advances, North-Holland, 1994.
- [2] A. Barzanouni, Inverse Limit Spaces with Various Shadowing Property, J. Math. 2014 (2014), 4pages. http://dx.doi.org/10.1155/2014/169183
- [3] B. Carvalho and D. Kwietniak, On homeomorphisms with the two-sided limit shadowing property, J. Math. Anal. Appl. 420 (2014), no. 1, 801-813
- [4] L. Chen and S. Li, Shadowing Property for Inverse Limit Spaces, Proc. Amer. Math. Soc. 115 (1992), no. 1, 573-580.
- [5] R. Gu, The asymptotic average shadowing property and transitivity, Nonlinear Anal.
 67 (2007), no. 6, 1680-1689
- [6] J. Park and Y. Zhang, Average shadowing properties on compact metric spaces, Commun. Korean Math. Soc. 21 (2006), no. 2, 355-361.
- [7] M. Lee, Various shadowing properties for inverse limit systems, J. Chungcheong. Math. Soc. 29 (2016), no. 4, 657-661
- [8] S. Li, Dynamical properties of the shift maps on the inverse limit spaces, Ergodic Theory and Dynam. Systems, 12 (1992), no. 1, 95-108.
- [9] E. Shah and T. K. Das, On shadowing property for inverse limit spaces, Math. Slovaca, 58 (2008),no. 1, 95-100.
- [10] Y. Zhang, On the average-shadowing property, Acta Sci. Natur. Univ. Pekinensis, 37 (2001), no. 5, 648-651.

*

Department of Mathematics Chungnam National University Daejeon 34134, Republic of Korea *E-mail*: ts.nyamdavaa@yahoo.com