• Title/Summary/Keyword: astaxanthin accumulation

Search Result 22, Processing Time 0.022 seconds

Bubble-column Photobioreactor에서의 Astaxanthin 유도배양의 연구

  • Choe, Su-Rim;Seo, In-Su;Lee, Cheol-Gyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.220-223
    • /
    • 2002
  • This study investigated a lab-scale inducing method for efficient astaxanthin accumulation. As a model system. Haematococcus pluvialis was cultivated in 2 liter bubble-column photobioreactors. The astaxanthin - inducing results using high light irradiation were compared with that of the control experiment under standard irradiation (40 ${\mu}E/m^2/s$). After the late linear growth phase (> 20 days). high light energy (230 ${\mu}E/m^2/s$) was supplied to the culture broth for astaxanthin induction. As a result. the dr γ cell weight and the astaxanthin productivity were increased up to 68% and 215%, respectively. higher than those of the control experiment. This result indicates that bubble-column type photobioreactor is a good candidate for mass cultivation of H. pluvialis and high light irradiation is an efficient induction method for astaxanthin accumulation in lab-scale bubble-column photobioreactors.

  • PDF

Enhancing Astaxanthin Accumulation in Haematococcus pluvialis by Coupled Light Intensity and Nitrogen Starvation in Column Photobioreactors

  • Zhang, Wen-wen;Zhou, Xue-fei;Zhang, Ya-lei;Cheng, Peng-fei;Ma, Rui;Cheng, Wen-long;Chu, Hua-qiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2019-2028
    • /
    • 2018
  • Natural astaxanthin mainly derives from a microalgae producer, Haematococcus pluvialis. The induction of nitrogen starvation and high light intensity is particularly significant for boosting astaxanthin production. However, the different responses to light intensity and nitrogen starvation needed to be analyzed for biomass growth and astaxanthin accumulation. The results showed that the highest level of astaxanthin production was achieved in nitrogen starvation, and was 1.64 times higher than the control group at 11 days. With regard to the optimization of light intensity utilization, it was at $200{\mu}mo/m^2/s$ under nitrogen starvation that the highest astaxanthin productivity per light intensity was achieved. In addition, both high light intensity and a nitrogen source had significant effects on multiple indicators. For example, high light intensity had a greater significant effect than a nitrogen source on biomass dry weight, astaxanthin yield and astaxanthin productivity; in contrast, nitrogen starvation was more beneficial for enhancing astaxanthin content per dry weight biomass. The data indicate that high light intensity synergizes with nitrogen starvation to stimulate the biosynthesis of astaxanthin.

Carotenogenesis in Haematococcus lacustris: Role of Protein Tyrosine Phosphatases

  • Park, Jae-Kweon;Tran, Phuong Ngoc;Kim, Jeong-Dong;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.918-921
    • /
    • 2009
  • In the present study, we examined the inhibitory effects of protein tyrosine phosphatase (PTPase) inhibitors, including sodium orthovanadate (SOV), ammonium molybdate (AM), and iodoacetamide (IA), on cell growth, accumulation of astaxanthin, and PTPase activity in the photosynthetic algae Haematococcus lacustris. PTPase activity was assayed spectrophotometrically and was found to be inhibited 60% to 90% after treatment with the inhibitors. SOY markedly abolished PTPase activity, significantly activating the accumulation of astaxanthin. These data suggest that the accumulation of astaxanthin in H. lacustris results from the concerted actions of several PTPases.

High Light-Induced Changes in the Activities of Antioxidant Enzymes and the Accumulation of Astaxanthin in the Green Alga Haematococcus pluvialis

  • Park, Seul-Ki;Jin, Eon-Seon;Lee, Choul-Gyun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.300-306
    • /
    • 2008
  • We investigated high light-induced alterations in antioxidant enzymes by exposing green vegetative cells of the alga Haematococcus pluvialis to excess irradiance to induce the production of astaxanthin, a carotenoid pigment. Total activity of catalase decreased approximately 70% after high light exposure, whereas glutathione peroxidase (GPX) activity was slightly enhanced. Total activity of superoxide dismutase and ascorbate peroxidase (APX) also slightly decreased. Overall, we did not observe dramatically elevated levels of antioxidant isozymes, although APXn, GPX2, and GPX3 isozyme increased slightly. ${H_2}{O_2}$ content increased about sixfold after high light exposure, demonstrating severe cellular oxidative stress, whereas lipid peroxidation was notably reduced. Concomitantly, astaxanthin accumulation increased about sevenfold. This result suggests that probably massively accumulated astaxanthin may be one of the antioxidant protector against high light stress.

Carotenoid Accumulation and Their Antioxidant Activity in Spent Laying Hens as Affected by Polarity and Feeding Period

  • Lee, C.-Y.;Lee, B.-D.;Na, J.-C.;An, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.799-805
    • /
    • 2010
  • Since the consumption of spent laying hens as roasted skewered meat increases, the effects of various carotenoids on pigmentation and antioxidant activity were tested with 62-wk-old 250 ISA brown laying hens to improve the quality of chicken meat. In a 6-wk feeding trial, 4 carotenoids with different polarity (${\beta}$-8-apo-carotenoic acid ethyl ester (ACAEE)>astaxanthin>canthaxanthin>${\beta}$-carotene) at 100 mg carotenoid/kg feed were used. The more polar the carotenoids, the higher were the levels in blood. After 5-wk adaptation, the concentrations of astaxanthin, canthaxanthin, and ACAEE in blood were -4 ${\mu}g/ml$. Canthaxanthin decreased significantly (p<0.05) the level of total blood cholesterol. Decreases in blood triglyceride by all carotenoids used were significant. ACAEE and astaxanthin tended to increase skin yellowness of thigh, breast, and wing proportionally to feeding period. In the case of polar carotenoids (ACAEE and astaxanthin), the longer the period of feeding, the higher the accumulation in skin was observed. Only astaxanthin was effective against the production of lipid peroxides in skin. Conclusively, out of the commercially available carotenoids we tested, astaxanthin is recommended for pigmentation of skin and inhibition of lipid oxidation.

Secondary Carotenoid Accumulation in Haematococcus (Chlorophyceae): Biosynthesis, Regulation, and Biotechnology

  • Jin Eon-Seon;Lee Choul-Gyun;Polle Jurgen E.W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.821-831
    • /
    • 2006
  • Unicellular green algae of the genus Haematococcus have been studied extensively as model organisms for secondary carotenoid accumulation. Upon environmental stress, such as strong irradiance or nitrogen deficiency, unicellular green algae of the genus Haematococcus accumulate secondary carotenoids in vesicles in the cytosol. Because secondary carotenoid accumulation occurs only upon specific environmental stimuli, there is speculation about the regulation of the biosynthetic pathway specific for secondary carotenogenesis. Because the carotenoid biosynthesis pathway is located both in the chloroplast and the cytosol, communication between both cellular compartments must be considered. Recently, the induction and regulation of astaxanthin biosynthesis in microalgae received considerable attention because of the increasing use of this secondary carotenoid as a source of pigmentation for fish aquaculture, as a component in cancer prevention, and as a free-radical quencher. This review summarizes the biosynthesis and regulation of the pathway, as well as the biotechnology of astaxanthin production in Haematococcus.

Astaxanthin Biosynthesis Enhanced by Reactive Oxygen Species in the Green Alga Haematococcus pluvialis

  • Kobayashi, Makio
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.322-330
    • /
    • 2003
  • The unicellular green alga Haematococcus pluvialis has recently attracted great inter-est due to its large amounts of ketocarotenoid astaxanthin, 3,3'-dihydroxy-${\beta}$,${\beta}$-carotene-4,4'-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle of H. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from veget ative to cyst cells. Furthermore, measurements of both in vitro and in vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative cells. Therefore, reactive oxygen species are involved in the regulation of both algal morph O-genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.

Proteomic Analysis of Protein Expression Patterns Associated with Astaxanthin Accumulation by Green Alga Haematococcus pluvialis (Chlorophyceae) Under High Light Stress

  • Kim Jeong-Dong;Lee Woo-Sung;Kim Beob-Min;Lee Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1222-1228
    • /
    • 2006
  • Two kinds of Haematococcus pluvialis cells (green vegetative cells cultivated under optimal cell culture conditions and red cyst cells maintained under high light stress conditions to induce astaxanthin production) were used to investigate the protein expression profiles by two-dimensional electrophoresis, image analysis, and peptide mass fingerprinting. The cellular accumulation of astaxanthin was evident after exposure to high light intensity and reached the maximum cellular level after 78 h of high light stress. In a 2-D electrophoresis analysis, 22 proteins were upregulated over 2-fold in the red cyst cells when compared with the green vegetative cells and selected for further analysis by chemically assisted fragmentation (CAF)-MALDI-TOF sequencing to identify the protein functions. Among 22 different spots, several key enzymes specific to the carotenoid pathway, including isopentenyl pyrophosphate isomerase (IPP) and lycopene $\beta$-cyclase, appeared in H. pluvialis after exposure to high light intensity. Therefore, IPP and lycopene $\beta$-cyclase would appear to be involved with carotenoid accumulation in the cytoplasm, as these peptides were preferentially upregulated by high light intensity preceding an increase in carotenoid, and only these forms were detected in the red cyst cells.

Pigmentation and Delayed Oxidation of Broiler Chickens by the Red Carotenoid, Astaxanthin, from Chemical Synthesis and the Yeast, Xanthophyllomyces dendrorhous

  • An, G.-H.;Song, J.-Y.;Chang, K.-S.;Lee, B.-D.;Chae, H.-S.;Jang, B.-G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1309-1314
    • /
    • 2004
  • The red carotenoid, astaxanthin was studied to improve the meat quality of broiler chickens. Astaxanthin pigmented chickens and delayed oxidation of lipid in them. Two sources of astaxanthin were used to pigment broiler chickens in a five-wk feeding trial: biological astaxanthin (BA) from the red yeast, Xanthophyllomyces dendrorhous, and chemical astaxanthin (CA) from chemical synthesis. The concentrations of CA (45 mg/kg feed) and BA (22.5 mg/kg feed) were set to give similar levels of pigmentation. The colorimetric values (a and b) of breast muscles were significantly changed by astaxanthin (p${\leq}$0.01). Absorption and accumulation of BA were higher than those of CA, probably due to the high contents of lipids in the yeast (17%). Lipid peroxide formation in skin was significantly decreased by astaxanthin (p${\leq}$0.05). This result indicated that the production of lipid peroxides in the carcasses of broiler chickens during storage could be delayed by astaxanthin. Therefore, astaxanthin could be used as an antioxidant as well as a colorant for broiler chickens.

Effect of Dietary Supplementation of Astaxanthin and Capxanthin on the Pigmentation of Egg Yolk (Astaxanthin과 Capxanthin의 급여가 난황의 착색에 미치는 효과)

  • Son, M.;Kim, S.;Lee, B.D.;Lim, Y.P.;An, G.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.219-224
    • /
    • 2008
  • A total of 96 ISA Brown layers, 63-wk-old, were used in a 12-day feeding trial to measure the effect of dietary astaxanthin and capxanthin on their accumulation in egg yolk. The hens were fed diets containing astaxanthin from the yeast, Phaffia rhodozyma, at 22.5 mg/kg feed, or synthetic compound at 45 mg/kg feed, and capxanthin from paprika extract at 45 mg/kg feed. The levels of yolk astaxanthin from the two pigments were saturated at $9^{th}$ day of feeding. Capxanthin was not accumulated in egg yolk but its derivatives were slightly present after $6{\sim}9$ days of feeding. The level of astaxanthin accumulated in egg yolk was proportional to the level of dietary astaxanthin. Except the color of egg yolk, other quality factors of eggs were not significantly different among the treatments.