Browse > Article

Carotenogenesis in Haematococcus lacustris: Role of Protein Tyrosine Phosphatases  

Park, Jae-Kweon (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Tran, Phuong Ngoc (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Hong, Seong-Joo (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 918-921 More about this Journal
Abstract
In the present study, we examined the inhibitory effects of protein tyrosine phosphatase (PTPase) inhibitors, including sodium orthovanadate (SOV), ammonium molybdate (AM), and iodoacetamide (IA), on cell growth, accumulation of astaxanthin, and PTPase activity in the photosynthetic algae Haematococcus lacustris. PTPase activity was assayed spectrophotometrically and was found to be inhibited 60% to 90% after treatment with the inhibitors. SOY markedly abolished PTPase activity, significantly activating the accumulation of astaxanthin. These data suggest that the accumulation of astaxanthin in H. lacustris results from the concerted actions of several PTPases.
Keywords
Haematococcus lacustris; astaxanthin; protein tyrosine phosphatase (PTPase); PTPase inhibitor; sodium orthovanadate (SOV);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Huyer, G., S. Liu, J. Kelly, J. Moffat, P. Payette, B. Kennedy, G. Tsaprailis, M. J. Gresser, and C. Ramachandran. 1997. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272: 843-851   DOI   ScienceOn
2 Lee, J. H. and Y. T. Kim. 2006. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370: 86-95   DOI   ScienceOn
3 Steinbrenner, J. and G. Sandmann. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol. 72: 7477-7484   DOI   ScienceOn
4 Tripathi, U., R. Sarada, S. Ramachandra Rao, and G. A. Ravishankar. 1999. Production of astaxanthin in Haematacoccus pluvialis cultured in various media. Biores. Technol. 68: 197- 199   DOI   ScienceOn
5 Zhou, B. and Z.-Y. Zhang. 1999. Mechanism of mitogenactivated protein kinase phosphatase-3 activation by ERK2. J. Biol. Chem. 274: 35526-35534   DOI   ScienceOn
6 Kobayashi, M. 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol. Bioprocess Eng. 8: 322-330   과학기술학회마을   DOI   ScienceOn
7 Tracey, A. S. and M. J. Gresser. 1986. Interaction of vanadate with phenol and tyrosine: Implications for the effects of vanadate on systems regulated by tyrosine phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 83: 609-613   DOI   ScienceOn
8 Vidhyavathi, R., L. Venkatachalam, R. Sarada, and G. A. Ravishankar. 2008. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J. Exp. Bot. 59: 1409-1418   DOI   ScienceOn
9 Ulm, R., E. Revenkova, G.-P. di Sansebastiano, N. Bechtold, and J. Paszkowski. 2001. Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev. 15: 699-709   DOI   ScienceOn
10 Park, E. K. and C. G. Lee. 2001. Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. J. Microbiol. Biotechnol. 11: 1024-1030   ScienceOn
11 Li, Y., M. Sommerfeld, F. Chen, and Q. Hu. 2008. Consumption of oxygen by astaxanthin biosynthesis: A protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J. Plant Physiol. 165: 1783-1797   DOI   ScienceOn
12 Kobayashi, M., T. Kakizono, N. Nishio, and S. Nagai. 1992. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J. Ferment. Bioeng. 74: 61-63   DOI   ScienceOn
13 Gupta, S., V. Radha, C. Sudhakar, and G. Swarup. 2002. A nuclear protein tyrosine phosphatase activates p53 and induces caspase-1-dependent apoptosis. FEBS Lett. 532: 61-66   DOI   PUBMED   ScienceOn
14 Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873   PUBMED   ScienceOn
15 Park, B. J., B. M. Kim, S. H. Shim, J. D. Kim, and C. G. Lee. 2006. Enhancement of astaxanthin production of Haematococcus pluvialis by mutation. Korean J. Microbiol. Biotechnol. 34: 136-142   과학기술학회마을
16 Fordham-Skelton, A. P., M. Skipsey, I. M. Eveans, R. Edwards, and J. A. Gatehouse. 1999. Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains: Expression during embryogenesis. Plant Mol. Biol. 39: 593- 605   DOI   ScienceOn
17 Fordham-Skelton, A. P., P. Chilley, V. Lumbreras, S. Reignoux, T. R. Fenton, C. C. Dahm, M. Pages, and J. A. Gatehouse. 2002. A novel higher plant protein tyrosine phosphatase interacts with SNF1-related protein kinases via a KIS (kinase interaction sequence) domain. Plant J. 29: 705-715   DOI   ScienceOn