Browse > Article
http://dx.doi.org/10.4014/jmb.1807.07008

Enhancing Astaxanthin Accumulation in Haematococcus pluvialis by Coupled Light Intensity and Nitrogen Starvation in Column Photobioreactors  

Zhang, Wen-wen (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University)
Zhou, Xue-fei (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University)
Zhang, Ya-lei (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University)
Cheng, Peng-fei (Poyang Lake Eco-economy Research Center, Jiujiang University)
Ma, Rui (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University)
Cheng, Wen-long (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University)
Chu, Hua-qiang (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.12, 2018 , pp. 2019-2028 More about this Journal
Abstract
Natural astaxanthin mainly derives from a microalgae producer, Haematococcus pluvialis. The induction of nitrogen starvation and high light intensity is particularly significant for boosting astaxanthin production. However, the different responses to light intensity and nitrogen starvation needed to be analyzed for biomass growth and astaxanthin accumulation. The results showed that the highest level of astaxanthin production was achieved in nitrogen starvation, and was 1.64 times higher than the control group at 11 days. With regard to the optimization of light intensity utilization, it was at $200{\mu}mo/m^2/s$ under nitrogen starvation that the highest astaxanthin productivity per light intensity was achieved. In addition, both high light intensity and a nitrogen source had significant effects on multiple indicators. For example, high light intensity had a greater significant effect than a nitrogen source on biomass dry weight, astaxanthin yield and astaxanthin productivity; in contrast, nitrogen starvation was more beneficial for enhancing astaxanthin content per dry weight biomass. The data indicate that high light intensity synergizes with nitrogen starvation to stimulate the biosynthesis of astaxanthin.
Keywords
Haematococcus pluvialis; biomass growth; astaxanthin production; high light intensity; nitrogen starvation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tan XB, Zhao XC, Zhang YL, Zhou YY, Yang LB, Zhang WW. 2018. Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresour. Technol. 247: 784-793.   DOI
2 Boussiba S, Fan L, Vonshak A. 1992. Enhancement and determination of astaxanthin accumulation in green-alga Haematococcus-Plubialis. Methods Enzymol. 213: 386-391.
3 Kiperstok AC, Sebestyen P, Podola B, Melkonian M. 2017. Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Res. 21: 213-222.   DOI
4 Scibilia L, Girolomoni L, Berteotti S, Alboresi A, M B. 2015. Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res. 12: 170-181.   DOI
5 Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S. 2006. Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J. Biosci. Bioeng. 102: 442-446.   DOI
6 Zhang CH, Zhang LT, Liu JG. 2016. The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae). Plant Physiol. Biochem. 107: 75-81.   DOI
7 Harker M, Tsavalos AJ, Young AJ. 1996. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55: 207-214.   DOI
8 Cakmak T , Angun P, Demiray YE, Ozkan A D, Elibol Z, Tekinay T. 2012. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng. 109: 1947-1957.   DOI
9 Borowitzka MA, Huisman JM, Osborn A. 1991. Culture of the astaxanthin-producing green-alga Haematococcus-Pluvialis. 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 3: 295-304.   DOI
10 Fabregas J, Dominguez A, Alvarez DG, Lamela T, AO. 1998. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett. 20: 623-626.   DOI
11 Scibilia L, Girolomoni L, Berteotti S, Alboresi A, Ballottari M. 2015. Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res. 12: 170-181.   DOI
12 Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol. 110: 689-696.   DOI
13 Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, et al. 2013. Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol. 162: 1110-1126.   DOI
14 Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G. 2012. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 158: 299-312.   DOI
15 Li Y, Sommerfeld M, Chen F, Hu Q. 2010. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 22: 253-263.   DOI
16 Sun H, Liu B, Lu X, Cheng KW, Chen F. 2017. Staged cultivation enhances biomass accumulation in the green growth phase of Haematococcus pluvialis. Bioresour. Technol. 233: 326-331.   DOI
17 Kobayashi M, Kakizono T, Nishio N, SN. 1992. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J. Ferment. Bioeng. 74: 61-63.   DOI
18 Fabregas J, Dominguez A, Maseda A, Otero A. 2003. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 61: 545-551.   DOI
19 Mao XM, Wu T, Sun DZ, Zhang Z, Chen F. 2018. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour. Technol. 249: 791-798.   DOI
20 Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl. Microbiol. Biotechnol. 94: 1495-1503.   DOI
21 Zhang LT, Su F, Zhang CH, Gong FY, Liu JG. 2017. Changes of photosynthetic behaviors and photoprotection during cell transformation and astaxanthin accumulation in Haematococcus pluvialis grown outdoors in tubular photobioreactors. Int. J. Mol. Sci. 18: 33.
22 Kim ZH, Park H, Lee HS, Lee CG. 2016. Enhancing photon utilization efficiency for astaxanthin production from Haematococcus lacustris using a split-column photobioreactor. J. Microbiol. Biotechnol. 26: 1285-1289.   DOI
23 Cheng J, Li K, Yang ZB, Zhou JH, Cen KF. 2016. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. Bioresour. Technol. 204: 49-54.   DOI
24 Zhang Z, Wang BB, Hu Q, Sommerfeld M, Li YG, Han DX. 2016. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotechnol. Bioeng. 113: 2088-2099.   DOI
25 Christian D, Zhang J, Sawdon AJ, Peng CA. 2018. Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresour. Technol. 256: 548-551.   DOI
26 Zhuang H, Lu H, W. C. 1999. Ultrastructural study on the process of astaxanthin accumulation in Haematococcus pluvialis Flotow under stress condition. J. Chine. Elect. Microsc. Soc. 19: 137-142.
27 Zhang Z, Sun DZ, Cheng KW, Chen F. 2018. Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation. Bioresour. Technol. 247: 610-615.   DOI
28 Chekanov K, Lukyanov A, Boussiba S, Aflalo C, Solovchenko A. 2016. Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back. Photosynth. Res. 128: 313-323.   DOI
29 Santos MF, Mesquita JF. 1984. Ultrastructural-study of Haematococcus-Lacustris (Girod) Rostafinski (Volvocales) .1. Some aspects of carotenogenesis. Cytologia 49: 215-228.   DOI
30 S B. 2000. Carotenongenesis in green alga Haematococcus pluvialis: Cellular physiology and response stress. Physiol. Plantarum. 108: 111-117.   DOI
31 Fabregas J, Dominguez A, Alvarez DG, Lamela T, Otero A. 1998. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett. 20: 623-626.   DOI
32 Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z. 2002. Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J. Phycol. 38: 325-331.   DOI
33 Wichuk K, Brynjolfsson S, Fu W. 2014. Biotechnological production of value-added carotenoids from microalgae: emerging technology and prospects. Bioengineered. 5: 204-208.   DOI
34 Borowitzka MAHJM, Osborn A. 1991. Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 3: 295-304.   DOI
35 Lorenz RT, Cysewski GR. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160-167.   DOI
36 Borowitzka MA. 2013. High-value products from microalgaetheir development and commercialisation. J. Appl. Phycol. 25: 743-756.   DOI
37 Koller M, Muhr A, Braunegg G. 2014. Microalgae as versatile cellular factories for valued products. Algal. Res. 6: 52-63.   DOI
38 Perez-Lopez P, Gonzalez-Garcia S, Jeffryes C, Agathos SN, McHugh E, Walsh D, et al. 2014. Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J. Clean. Prod. 64: 332-344.   DOI
39 Wan MX, Hou DM, Li YG, Fan JH, Huang JK, Liang ST, et al. 2014. The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour. Technol. 163: 26-32.   DOI
40 Sammy B, Wang B, Jian-Ping Y, Aliza Z, Feng C. 1999. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Bioresour. Technol. 21: 601-604.
41 Li Y , Sommerfeld M, Chen F, Hu Q. 2008. Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J. Plant. Physiol. 165: 1783-1797.   DOI
42 Li YT, Sommerfeld M, Chen F, Hu Q. 2010. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 22: 253-263.   DOI
43 Kang CD, L ee JS, Park TH, Sim SJ. 2007. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl. Microbiol. Biotechnol. 74: 987-94.   DOI