DOI QR코드

DOI QR Code

Enhancing Astaxanthin Accumulation in Haematococcus pluvialis by Coupled Light Intensity and Nitrogen Starvation in Column Photobioreactors

  • Zhang, Wen-wen (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University) ;
  • Zhou, Xue-fei (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University) ;
  • Zhang, Ya-lei (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University) ;
  • Cheng, Peng-fei (Poyang Lake Eco-economy Research Center, Jiujiang University) ;
  • Ma, Rui (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University) ;
  • Cheng, Wen-long (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University) ;
  • Chu, Hua-qiang (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University)
  • 투고 : 2018.07.09
  • 심사 : 2018.10.24
  • 발행 : 2018.12.28

초록

Natural astaxanthin mainly derives from a microalgae producer, Haematococcus pluvialis. The induction of nitrogen starvation and high light intensity is particularly significant for boosting astaxanthin production. However, the different responses to light intensity and nitrogen starvation needed to be analyzed for biomass growth and astaxanthin accumulation. The results showed that the highest level of astaxanthin production was achieved in nitrogen starvation, and was 1.64 times higher than the control group at 11 days. With regard to the optimization of light intensity utilization, it was at $200{\mu}mo/m^2/s$ under nitrogen starvation that the highest astaxanthin productivity per light intensity was achieved. In addition, both high light intensity and a nitrogen source had significant effects on multiple indicators. For example, high light intensity had a greater significant effect than a nitrogen source on biomass dry weight, astaxanthin yield and astaxanthin productivity; in contrast, nitrogen starvation was more beneficial for enhancing astaxanthin content per dry weight biomass. The data indicate that high light intensity synergizes with nitrogen starvation to stimulate the biosynthesis of astaxanthin.

키워드

참고문헌

  1. Borowitzka MA. 2013. High-value products from microalgaetheir development and commercialisation. J. Appl. Phycol. 25: 743-756. https://doi.org/10.1007/s10811-013-9983-9
  2. Koller M, Muhr A, Braunegg G. 2014. Microalgae as versatile cellular factories for valued products. Algal. Res. 6: 52-63. https://doi.org/10.1016/j.algal.2014.09.002
  3. Perez-Lopez P, Gonzalez-Garcia S, Jeffryes C, Agathos SN, McHugh E, Walsh D, et al. 2014. Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J. Clean. Prod. 64: 332-344. https://doi.org/10.1016/j.jclepro.2013.07.011
  4. Lorenz RT, Cysewski GR. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
  5. Wan MX, Hou DM, Li YG, Fan JH, Huang JK, Liang ST, et al. 2014. The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour. Technol. 163: 26-32. https://doi.org/10.1016/j.biortech.2014.04.017
  6. Sammy B, Wang B, Jian-Ping Y, Aliza Z, Feng C. 1999. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Bioresour. Technol. 21: 601-604.
  7. Li Y , Sommerfeld M, Chen F, Hu Q. 2008. Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J. Plant. Physiol. 165: 1783-1797. https://doi.org/10.1016/j.jplph.2007.12.007
  8. Li YT, Sommerfeld M, Chen F, Hu Q. 2010. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 22: 253-263. https://doi.org/10.1007/s10811-009-9453-6
  9. Kang CD, L ee JS, Park TH, Sim SJ. 2007. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl. Microbiol. Biotechnol. 74: 987-94. https://doi.org/10.1007/s00253-006-0759-x
  10. Tan XB, Zhao XC, Zhang YL, Zhou YY, Yang LB, Zhang WW. 2018. Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresour. Technol. 247: 784-793. https://doi.org/10.1016/j.biortech.2017.09.152
  11. Boussiba S, Fan L, Vonshak A. 1992. Enhancement and determination of astaxanthin accumulation in green-alga Haematococcus-Plubialis. Methods Enzymol. 213: 386-391.
  12. Kiperstok AC, Sebestyen P, Podola B, Melkonian M. 2017. Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Res. 21: 213-222. https://doi.org/10.1016/j.algal.2016.10.025
  13. Scibilia L, Girolomoni L, Berteotti S, Alboresi A, M B. 2015. Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res. 12: 170-181. https://doi.org/10.1016/j.algal.2015.08.024
  14. Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S. 2006. Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J. Biosci. Bioeng. 102: 442-446. https://doi.org/10.1263/jbb.102.442
  15. Zhang CH, Zhang LT, Liu JG. 2016. The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae). Plant Physiol. Biochem. 107: 75-81. https://doi.org/10.1016/j.plaphy.2016.05.029
  16. Harker M, Tsavalos AJ, Young AJ. 1996. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55: 207-214. https://doi.org/10.1016/0960-8524(95)00002-X
  17. Cakmak T , Angun P, Demiray YE, Ozkan A D, Elibol Z, Tekinay T. 2012. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng. 109: 1947-1957. https://doi.org/10.1002/bit.24474
  18. Fabregas J, Dominguez A, Alvarez DG, Lamela T, AO. 1998. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett. 20: 623-626. https://doi.org/10.1023/A:1005322416796
  19. Borowitzka MA, Huisman JM, Osborn A. 1991. Culture of the astaxanthin-producing green-alga Haematococcus-Pluvialis. 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 3: 295-304. https://doi.org/10.1007/BF02392882
  20. Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol. 110: 689-696. https://doi.org/10.1104/pp.110.2.689
  21. Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, et al. 2013. Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol. 162: 1110-1126. https://doi.org/10.1104/pp.113.214320
  22. Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G. 2012. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 158: 299-312. https://doi.org/10.1104/pp.111.184333
  23. Scibilia L, Girolomoni L, Berteotti S, Alboresi A, Ballottari M. 2015. Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res. 12: 170-181. https://doi.org/10.1016/j.algal.2015.08.024
  24. Li Y, Sommerfeld M, Chen F, Hu Q. 2010. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 22: 253-263. https://doi.org/10.1007/s10811-009-9453-6
  25. Sun H, Liu B, Lu X, Cheng KW, Chen F. 2017. Staged cultivation enhances biomass accumulation in the green growth phase of Haematococcus pluvialis. Bioresour. Technol. 233: 326-331. https://doi.org/10.1016/j.biortech.2017.03.011
  26. Kobayashi M, Kakizono T, Nishio N, SN. 1992. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J. Ferment. Bioeng. 74: 61-63. https://doi.org/10.1016/0922-338X(92)90271-U
  27. Mao XM, Wu T, Sun DZ, Zhang Z, Chen F. 2018. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour. Technol. 249: 791-798. https://doi.org/10.1016/j.biortech.2017.10.090
  28. Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl. Microbiol. Biotechnol. 94: 1495-1503. https://doi.org/10.1007/s00253-012-3940-4
  29. Fabregas J, Dominguez A, Maseda A, Otero A. 2003. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 61: 545-551. https://doi.org/10.1007/s00253-002-1204-4
  30. Zhang LT, Su F, Zhang CH, Gong FY, Liu JG. 2017. Changes of photosynthetic behaviors and photoprotection during cell transformation and astaxanthin accumulation in Haematococcus pluvialis grown outdoors in tubular photobioreactors. Int. J. Mol. Sci. 18: 33.
  31. Kim ZH, Park H, Lee HS, Lee CG. 2016. Enhancing photon utilization efficiency for astaxanthin production from Haematococcus lacustris using a split-column photobioreactor. J. Microbiol. Biotechnol. 26: 1285-1289. https://doi.org/10.4014/jmb.1601.01082
  32. Cheng J, Li K, Yang ZB, Zhou JH, Cen KF. 2016. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. Bioresour. Technol. 204: 49-54. https://doi.org/10.1016/j.biortech.2015.12.076
  33. Zhang Z, Wang BB, Hu Q, Sommerfeld M, Li YG, Han DX. 2016. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotechnol. Bioeng. 113: 2088-2099. https://doi.org/10.1002/bit.25976
  34. Christian D, Zhang J, Sawdon AJ, Peng CA. 2018. Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresour. Technol. 256: 548-551. https://doi.org/10.1016/j.biortech.2018.02.074
  35. Zhang Z, Sun DZ, Cheng KW, Chen F. 2018. Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation. Bioresour. Technol. 247: 610-615. https://doi.org/10.1016/j.biortech.2017.09.133
  36. Chekanov K, Lukyanov A, Boussiba S, Aflalo C, Solovchenko A. 2016. Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back. Photosynth. Res. 128: 313-323. https://doi.org/10.1007/s11120-016-0246-x
  37. Santos MF, Mesquita JF. 1984. Ultrastructural-study of Haematococcus-Lacustris (Girod) Rostafinski (Volvocales) .1. Some aspects of carotenogenesis. Cytologia 49: 215-228. https://doi.org/10.1508/cytologia.49.215
  38. Zhuang H, Lu H, W. C. 1999. Ultrastructural study on the process of astaxanthin accumulation in Haematococcus pluvialis Flotow under stress condition. J. Chine. Elect. Microsc. Soc. 19: 137-142.
  39. S B. 2000. Carotenongenesis in green alga Haematococcus pluvialis: Cellular physiology and response stress. Physiol. Plantarum. 108: 111-117. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  40. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z. 2002. Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J. Phycol. 38: 325-331. https://doi.org/10.1046/j.1529-8817.2002.01107.x
  41. Wichuk K, Brynjolfsson S, Fu W. 2014. Biotechnological production of value-added carotenoids from microalgae: emerging technology and prospects. Bioengineered. 5: 204-208. https://doi.org/10.4161/bioe.28720
  42. Borowitzka MAHJM, Osborn A. 1991. Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 3: 295-304. https://doi.org/10.1007/BF02392882
  43. Fabregas J, Dominguez A, Alvarez DG, Lamela T, Otero A. 1998. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett. 20: 623-626. https://doi.org/10.1023/A:1005322416796

피인용 문헌

  1. Cloning, expression, and characterization of a novel plant type cryptochrome gene from the green alga Haematococcus pluvialis vol.172, pp.None, 2018, https://doi.org/10.1016/j.pep.2020.105633
  2. Chemical Transformation of Astaxanthin from Haematococcus pluvialis Improves Its Antioxidative and Anti-inflammatory Activities vol.5, pp.30, 2020, https://doi.org/10.1021/acsomega.0c02479
  3. An Integrated Strategy for Nutraceuticals from Haematoccus pluvialis : From Cultivation to Extraction vol.9, pp.9, 2018, https://doi.org/10.3390/antiox9090825
  4. Propagation of Inoculum for Haematococcus pluvialis Microalgae Scale-Up Photobioreactor Cultivation System vol.10, pp.18, 2018, https://doi.org/10.3390/app10186283
  5. Characterization of a Haematococcus pluvialis Diacylglycerol Acyltransferase 1 and Its Potential in Unsaturated Fatty Acid-Rich Triacylglycerol Production vol.12, pp.None, 2018, https://doi.org/10.3389/fpls.2021.771300
  6. A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin vol.11, pp.2, 2018, https://doi.org/10.3390/biom11020256
  7. Electric Stimulation of Astaxanthin Biosynthesis in Haematococcus pluvialis vol.11, pp.8, 2018, https://doi.org/10.3390/app11083348
  8. Characterization of type-2 diacylglycerol acyltransferases in Haematococcus lacustris reveals their functions and engineering potential in triacylglycerol biosynthesis vol.21, pp.1, 2021, https://doi.org/10.1186/s12870-020-02794-6
  9. Enhancement of Astaxanthin and Fatty Acid Production in Haematococcus pluvialis Using Strigolactone vol.12, pp.4, 2022, https://doi.org/10.3390/app12041791