High Light-Induced Changes in the Activities of Antioxidant Enzymes and the Accumulation of Astaxanthin in the Green Alga Haematococcus pluvialis

  • Park, Seul-Ki (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Jin, Eon-Seon (Department of Life Science, Hanyang University) ;
  • Lee, Choul-Gyun (Department of Biotechnology, Inha University) ;
  • Lee, Mi-Young (Department of Medical Biotechnology, Soonchunhyang University)
  • Published : 2008.12.31

Abstract

We investigated high light-induced alterations in antioxidant enzymes by exposing green vegetative cells of the alga Haematococcus pluvialis to excess irradiance to induce the production of astaxanthin, a carotenoid pigment. Total activity of catalase decreased approximately 70% after high light exposure, whereas glutathione peroxidase (GPX) activity was slightly enhanced. Total activity of superoxide dismutase and ascorbate peroxidase (APX) also slightly decreased. Overall, we did not observe dramatically elevated levels of antioxidant isozymes, although APXn, GPX2, and GPX3 isozyme increased slightly. ${H_2}{O_2}$ content increased about sixfold after high light exposure, demonstrating severe cellular oxidative stress, whereas lipid peroxidation was notably reduced. Concomitantly, astaxanthin accumulation increased about sevenfold. This result suggests that probably massively accumulated astaxanthin may be one of the antioxidant protector against high light stress.

Keywords

References

  1. Boussiba, S. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol Plant 108:111-117 (2000) https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  2. Hagen, C., Siegmund, S. & Braune, W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217-226 (2002) https://doi.org/10.1017/S0967026202003669
  3. Ceron, M. C. et al. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol 74:1112-1119 (2007) https://doi.org/10.1007/s00253-006-0743-5
  4. Lorenz, R. T. & Cysewski, G. R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160-167 (2000) https://doi.org/10.1016/S0167-7799(00)01433-5
  5. Eom, H., Lee, C. G. & Jin, E. Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231-1242 (2006) https://doi.org/10.1007/s00425-005-0171-2
  6. Steinbrenner, J. & Linden, H. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343-356 (2003) https://doi.org/10.1023/A:1023948929665
  7. Kobayashi, M. In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 54:550-555 (2000) https://doi.org/10.1007/s002530000416
  8. Montsant, A., Zarka, A. & Boussiba, S. Presence of a nonhydrolyzable biopolymer in the cell wall of vegetative cells and astaxanthin-rich cysts of Haematococcus pluvialis (Chlorophyceae). Mar Biotechnol (NY) 3:515-521 (2001) https://doi.org/10.1007/s1012601-0051-0
  9. Wang, S. B. et al. Isolation and proteomic alalysis of cell wall-deficient Haematococcus pluvialis mutants. Proteomics 5:4839-4851 (2005) https://doi.org/10.1002/pmic.200400092
  10. Wang, S. B. et al. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 4:692-708 (2004) https://doi.org/10.1002/pmic.200300634
  11. Skorzynska-Polit, E. & Krupa, Z. Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Arch Environ Contam Toxicol 50:482-487 (2006) https://doi.org/10.1007/s00244-005-0125-5
  12. Lee, M. Y. Effect of $Na_2SO_3$ on the activities of antioxidant enzymes in geranium seedlings. Phytochemistry 59:493-499 (2002) https://doi.org/10.1016/S0031-9422(01)00478-2
  13. Shin, H. W. & Lee, M. Y. Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol 15:13-19 (2003) https://doi.org/10.1023/A:1022903602365
  14. Asada, K., Takahashi, M. & Nagate, M. Assay and inhibitors of spinach superoxide dismutase. Agric Biol Chem 38:471-473 (1974) https://doi.org/10.1271/bbb1961.38.471
  15. Lee, D. H. & Lee, C. B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75-85 (2000)
  16. Woo, S. O. et al. Molecular parameters for assessing marine biotoxicity: gene expressions of Rockfish (Sebastes schlegeli) exposed to polycyclic aromatic hydrocarbons. Mol Cell Toxicol 3:267-272 (2007)
  17. Mittler, R. & Zilinskas, B. A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540-546 (1993) https://doi.org/10.1006/abio.1993.1366
  18. Kang, K. S. et al. Changes in the isozyme composition of antioxidant enzymes in response to aminotriazole in leaves of Arabidopsis thaliana. J Plant Biology 42:187-193 (1999) https://doi.org/10.1007/BF03030477
  19. Kuk, Y. I. et al. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 43:2109-2117 (2003) https://doi.org/10.2135/cropsci2003.2109
  20. Romero-Puertas, M. C. et al. Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytologist 170:43-52 (2006) https://doi.org/10.1111/j.1469-8137.2006.01643.x
  21. Sul, D. G., Oh, S. N. & Lee, E. I. The expression of DNA polymerase-${\beta}$ and DNA damage in jurkat cells exposed to hydrogen peroxide under hyperbaric pressure. Mol Cell Toxicol 4:66-71 (2008)
  22. Davey, M. W. et al. High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347:201-207 (2005) https://doi.org/10.1016/j.ab.2005.09.041
  23. Esterbauer, H. & Cheeseman, K. H. Determination of aldehydic lipid peroxidation products?: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407-421 (1990) https://doi.org/10.1016/0076-6879(90)86134-H
  24. Sarry, J. E. et al. The protective function of the xanthophyll cycle in photosynthesis. FEBS Lett 353:147-150 (1994) https://doi.org/10.1016/0014-5793(94)01028-5
  25. Lee, M. Y. & Kim, S. S. Characteristics of six isoperoxidases from Korean radish root. Phytochemistry 35:287-290 (1994) https://doi.org/10.1016/S0031-9422(00)94749-6
  26. Park, S. K., Jin, E. S. & Lee, M. Y. Expression and antioxidant enzymes in Chaetoceros neogracile, an antarctic alga. CryoLetters 29:351-361 (2008)
  27. Yim, E. K. et al. Genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. DNA Cell Biol 23:826-835 (2004) https://doi.org/10.1089/dna.2004.23.826
  28. Son, B. S. et al. Toxicoproteomic analysis of differentially expressed proteins in rat liver by DEHP. Mol Cell Toxicol 3:299-305 (2007)
  29. Xie, L. et al. Genomic and proteomic profiling of oxidative stress response in human diploid fibroblasts. Biogerontology in press (2008)
  30. Choi, S. L., Suh, I. S. & Lee, C. G. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzym Microb Tech 33:403-409 (2003) https://doi.org/10.1016/S0141-0229(03)00137-6
  31. Rao, M. V., Paliyath, G. & Ormrod, D. P. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125-136 (1996) https://doi.org/10.1104/pp.110.1.125
  32. Vitoria, A. P., Lea, P. J. & Azevedo, R. A. Antioxidant enzyme responses to cadmium in radish tissues. Phytochemistry 57:701-710 (2001) https://doi.org/10.1016/S0031-9422(01)00130-3
  33. Holovska, K. et al. Are ruminal bacteria protected against environmental stress by plant antioxidants? Lett Appl Microbiol 35:301-304 (2002) https://doi.org/10.1046/j.1472-765X.2002.01185.x
  34. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685 (1970) https://doi.org/10.1038/227680a0
  35. Woodbury, W., Spencer, A. K. & Stahman, M. A. An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301-305 (1971) https://doi.org/10.1016/0003-2697(71)90375-7
  36. Lin, C. L., Chen, H. J. & Hou, W. C. Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulfate polyacrylamide gels. Electophoresis 23:513-516 (2002) https://doi.org/10.1002/1522-2683(200202)23:4<513::AID-ELPS513>3.0.CO;2-J