• Title/Summary/Keyword: associated primes

Search Result 16, Processing Time 0.017 seconds

SOME FINITENESS RESULTS FOR CO-ASSOCIATED PRIMES OF GENERALIZED LOCAL HOMOLOGY MODULES AND APPLICATIONS

  • Do, Yen Ngoc;Nguyen, Tri Minh;Tran, Nam Tuan
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1061-1078
    • /
    • 2020
  • We prove some results about the finiteness of co-associated primes of generalized local homology modules inspired by a conjecture of Grothendieck and a question of Huneke. We also show some equivalent properties of minimax local homology modules. By duality, we get some properties of Herzog's generalized local cohomology modules.

TORSION POINTS OF ELLIPTIC CURVES WITH BAD REDUCTION AT SOME PRIMES II

  • Yasuda, Masaya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.83-96
    • /
    • 2013
  • Let K be a number field and fix a prime number $p$. For any set S of primes of K, we here say that an elliptic curve E over K has S-reduction if E has bad reduction only at the primes of S. There exists the set $B_{K,p}$ of primes of K satisfying that any elliptic curve over K with $B_{K,p}$-reduction has no $p$-torsion points under certain conditions. The first aim of this paper is to construct elliptic curves over K with $B_{K,p}$-reduction and a $p$-torsion point. The action of the absolute Galois group on the $p$-torsion subgroup of E gives its associated Galois representation $\bar{\rho}_{E,p}$ modulo $p$. We also study the irreducibility and surjectivity of $\bar{\rho}_{E,p}$ for semistable elliptic curves with $B_{K,p}$-reduction.

△-CLOSURES OF IDEALS WITH RESPECT TO MODULES

  • Ansari-Toroghy, H.;Dorostkar, F.
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.101-113
    • /
    • 2008
  • Let M be an arbitrary module over a commutative Noetherian ring R and let ${\triangle}$ be a multiplicatively closed set of non-zero ideals of R. In this paper, we will introduce the dual notion of ${\triangle}$-closure and ${\triangle}$-dependence of an ideal with respect to M and obtain some related results.

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.

SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS

  • Ouyang, Lunqun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.687-701
    • /
    • 2012
  • Let $R$ be a ring and $nil(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a{\in}R{\mid}xa{\in}nil(R)$ for all $x{\in}X$}, which is called a weak annihilator of $X$ in $R$. $A$ ring $R$ is called weak zip provided that for any subset $X$ of $R$, if $N_R(Y){\subseteq}nil(R)$, then there exists a finite subset $Y{\subseteq}X$ such that $N_R(Y){\subseteq}nil(R)$, and a ring $R$ is called weak symmetric if $abc{\in}nil(R){\Rightarrow}acb{\in}nil(R)$ for all a, b, $c{\in}R$. It is shown that a generalized power series ring $[[R^{S,{\leq}}]]$ is weak zip (resp. weak symmetric) if and only if $R$ is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[[R^{S,{\leq}}]]$ in terms of all weak associated primes of $R$ in a very straightforward way.

ASYMPTOTIC STABILITY OF SOME SEQUENCES RELATED TO INTEGRAL CLOSURE

  • ANSARI-TOROGHY, H.
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this paper we will show that if E is an injective module over a commutative ring A, then the sequence of sets $Ass_{A}(A/I^{n})^{*(E)}),\;n{\in}N,$ is increasing and ultimately constant. Also we will obtain some results concerning the integral closure of ideals related to some modules.

  • PDF

RELATIVE PROJECTIVITY AND RELATED RESULTS

  • Toroghy, H.Ansari
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.419-426
    • /
    • 2004
  • Let R be a commutative Noetherian ring and let M be an Artinian R-module. Let M${\subseteq}$M′ be submodules of M. Suppose F is an R-module which is projective relative to M. Then it is shown that $Att_{R}$($Hom_{A}$ (F,M′) :$Hom_{A}$(F,M) $In^n$), n ${\in}$N and $Att_{R}$($Hom_{A}$(F,M′) :$Hom_{A}$(F,M) In$^n$ $Hom_{A}$(F,M") :$Hom_{A}$(F,M) $In^n$),n ${\in}$ N are ultimately constant.

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong;Wang, Xian
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.239-250
    • /
    • 2014
  • Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.