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TORSION POINTS OF ELLIPTIC CURVES WITH BAD
REDUCTION AT SOME PRIMES II

MASAYA YASUDA

ABSTRACT. Let K be a number field and fix a prime number p. For any
set S of primes of K, we here say that an elliptic curve E over K has
S-reduction if E has bad reduction only at the primes of S. There exists
the set B, of primes of K satisfying that any elliptic curve over K with
Bg p-reduction has no p-torsion points under certain conditions. The
first aim of this paper is to construct elliptic curves over K with By p-
reduction and a p-torsion point. The action of the absolute Galois group
on the p-torsion subgroup of F gives its associated Galois representation
PE,p modulo p. We also study the irreducibility and surjectivity of pg
for semistable elliptic curves with By ,-reduction.

1. Introduction

Let E be an elliptic curve over a number field K. For a prime number p,
the p-torsion points of E are the points of finite order p in the Mordell-Weil
group E(K). In [14], we studied the existence of a p-torsion points of E which
has bad reduction only at some primes, and showed the following [14, Theorem
1.2]. Let ¢, denote a fixed primitive p-th root of unity.

Theorem 1.1. Let K be a number field. Let p > 5 be a prime number such
that the ramification index ey satisfies e, < p — 1 for the primes p of K over
p. Set

Bk, = {q: prime of K over a prime £ | £ # p and ¢/ # +1 mod p},

where f is the residue degree of q. Let E be an elliptic curve over K with
B p-reduction. If p does not divide the class number hy ¢,y of K(¢p), then E
has no p-torsion points.

Fix a prime number p > 5 with e, < p — 1 for the primes p of K over p. It
follows by Theorem 1.1 that hg(c,) is divisible by p if there exists E over K
with B ,-reduction and a p-torsion point. The motivation of this paper arises
from the question whether we can construct such pairs (F, K). We here focus
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on the case where K is a quadratic field. Kamienny [2] and Kenku-Momose [3]
classified the possible torsion subgroups of elliptic curves over quadratic fields
K, and showed that any elliptic curve over K cannot have p-torsion points for
the primes p > 17. Hence it is sufficient to consider the cases p = 5,7,11 and
13. In the cases p = 5 and 7, we construct such pairs (E, K) using Kubert’s
parametrization [5, Table 3] for an infinite family of elliptic curves with a p-
torsion point. Furthermore, we list such pairs (F, K) and their h K(¢,)- For the
cases p = 11 and 13, Jeon, Kim and Lee [1] gave an infinite family of elliptic
curves F over quadratic fields K with a p-torsion point. On the contrary to
the cases p =5 and 7, we show that an elliptic curve from the family given by
Jeon, Kim and Lee cannot have B j,-reduction with very high probability.

Let G denote the absolute Galois group Gal(K /K). The action of G on
the p-torsion subgroup E[p] gives its associated Galois representation

Prp: Gk — Aut(E[p]) ~ GLa(Fp)

modulo p. We also study the irreducibility and surjectivity of pg ,, for semistable
elliptic curves E with By p-reduction. Using a part of Serre’s results [11],
Mazur [7] studied the surjectivity of P, for semistable elliptic curves E over
Q. Furthermore, Kraus [4] extended Mazur’s work to the case where K is a
quadratic field. We then focus on the case where K is a cubic field. We mainly
consider the irreducibility of pg ,. If pf , is reducible, then we have

ﬁE,p ~ (%1 ;2) )

where ¢; : G — IF; is a character for ¢ = 1,2. For semistable elliptic curves
E with good reduction at the primes of K over p, we show that each ¢; has a
structure of an Og-group scheme of order p, where Ok is the ring of integers of
K. Our main idea is to classify the structure of Og-group schemes of order p
for cubic fields K and show that either of ¢; is a trivial character under certain
conditions. We obtain the following result on the irreducibility of pg ,,.

Theorem 1.2. Let p be an odd prime number. Let K be a cubic field with
ged(p — 1, h}) =1, where h;r( is the narrow class number of K. Suppose that
p1 hic,) and ey <p —1 for the primes p of K over p. Let E be a semistable
elliptic curve over K with B p-reduction. If p satisfies either of the following
conditions, then pg , is irreducible.
(A) p is prime in Ok.
(B) In the case where K is a totally real cubic field, we have p { Nmp q(u®—
1) or NmK/Q(U2 —1), where u,v are two independent fundamental units
of K and Nmp g denotes the norm map. In the case where K is a
complex cubic field, we have p { Nmy /q(u—1), where u is a fundamental
unit of K such that u > 0 with respect to the only one real place of K.

Notation. The symbols Z, and Q denote, respectively, the ring of integers,
and the field of rational numbers. For a prime p, the finite field with p elements
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is denoted by F,. We denote the p-adic integers and the p-adic number field
by Z, and Q,. Let Ok denote the ring of integers of a number field K. For
a prime p of K, let O, denote the completion of O at p, k its residue field,
and K, the field of fractions of O,.

2. Preliminaries

In this section, we consider the property of elliptic curves with Bk p-reduc-
tion and a p-torsion point. We also review families of elliptic curves with a
p-torsion point.

2.1. Elliptic curves with Bk ,-reduction and a p-torsion point

Let K be a number field. Fix a prime number p > 5 with e, < p — 1 for
the primes p of K over p. If there exists an elliptic curve with B p-reduction
and a p-torsion point, it follows by Theorem 1.1 that p | hg(,) and hence
Ak (c,) # 0, where Ap denotes the p-part of the ideal class group of a number
field F'. Furthermore, we can see the following property.

Let E be an elliptic curve over K with Bk p-reduction and a p-torsion point
P. Using the Weil-pairing e, : E[p] x E[p] — up, we define a map ¢ : E[p] — pp
by @ — e,(P,Q), where p,, denotes the set of the p-th root of unity. Since the
point P is rational over K, this map gives an exact sequence

(1) 0 — Z/pZ — Elp] % pp — 0

of Gi-modules, where Z/pZ denotes the constant G x-module generated by P.
Let L = K(FE[p]) denote the field generated by the points of E[p]. By [14, Poof
of Theorem 1.2], we may assume that L is an unramified extension of K(¢,) of
degree p. The representation pg, ,, induces the representation

p: Gal(L/K) — GLy(F,).
We note that p is faithful and of the form (§ * ) by the exact sequence (1) where

wiA—=TFY A=Gal(K(G)/K)

denotes the cyclotomic character defined by o(¢,) = ¢ @) for every o € A.
We see that p does not split by the assumption L # K((p), and hence the
group Gal(L/K((p)) is isomorphic to the subgroup of GL2(F,) consisting of all
matrices of the form (} %) under the representation p. We now consider the
action of A on Gal(L/K((p)) by conjugation in Gal(L/K). Consider A as a
subgroup of F* under the cyclotomic character w and fix a € A C F;’. Since

conjugating ({ %) by a € F) gives ((1) k{“), we see that @ € A C F acts on

Gal(L/K(¢,)) as multiplication by a~!. Then we have A‘I"{(ép) #0, where R*'
denotes the w'-eigenspace of a Z,[A]-module R as in the notation of [13, §6.3].
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2.2. Families of elliptic curves with a p-torsion point

2.2.1. The cases p = 5 and 7. Let E be an elliptic curve over a number
field K with a p-torsion point P. The following result is well-known ([5, 12] for
details): For p = 5, there exists a unique ¢ € K \ {0} such that E is isomorphic
to an elliptic curve defined by the equation

By + (1= tay —ty = o — ta?

and the 5-torsion point P corresponds to (0,0) under the isomorphism. The
discriminant of Et(5) is
(2) ABED)) =52 — 11t — 1).
Similarly, for p = 7, there exists a unique t € K\{0, 1} such that E is isomorphic
to an elliptic curve defined by the equation

Etm cyt A (Lt —tDay + (2 — )y = 23 + (12 — t3)2?
and the 7-torsion point P corresponds to (0,0) under the isomorphism. The

discriminant of E; (7)

(3) A(Ef”) =17t —1)7(t> — 8t + 5t + 1).

2.2.2. The cases p = 11 and 13. For p = 11 and 13, Jeon, Kim and
Lee gave an infinite family of elliptic curves Et(p ),t € Q over quadratic fields
Q(4/dp) having a p-torsion point as follows (see [1, Section 3] for details): For
p =11, set

b1 = —it(t—l)(tQ—l—l—\/dll)(t3+t—2—t\/d11),

c11 = %t(t* 1)(t2+17\/d11),

din = t*+27 -4t +1.
On the other hand, for p = 13, set

(=Pt 1— (6= 1) Vdis) (Pt 1 —Vdas) (52— t\/dm)

bis = At 12— 1—/d1g)
_ (PP Vde) (Pt 1 — (- 1)\/d13)

as = 2(t3+t2—1—+/dy3)

diz = 04265 44 4263 + 612 + 4t + 1.

Let p =11 or 13. Let Et(p) be an elliptic curve over a quadratic field Q(/d,)
defined by the equation

Et(p) cy? + (1 —cp)wy — bpy = 2% — bya?
with ¢ € Q. Then Et(p) has a p-torsion point (0,0).
3. A construction of elliptic curves with Bk p-reduction and a
p-torsion point (quadratic field case)

Throughout this section, let K be a quadratic field.
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3.1. The cases p =5 and 7

In this subsection, we construct pairs (E, K), where E is an elliptic curve
over K with By p-reduction and a p-torsion point. To construct such pairs, we
give the following result:

Proposition 3.1. Letp =5 or 7. Let E = Et(p),t € Ok be an elliptic curve

over defined as in §2.2.1. Suppose that E has By p-reduction. Then we have
t2—11t— 1€ OF if p=>5,
t3—8t2+5t+1€0x ifp=T.

Proof. For simplicity, we only consider the case p = 7. Assume t3—8t2+5t+1 ¢
OJ. Then there exists a prime ¢ dividing t3—8t24+5t+1 € Ok. By the equation
(3), the elliptic curve E has bad reduction at some prime q of K over £. Since
E has B j,-reduction, we may assume ¢ # 7. We note that the solutions of
the equation

X?—8X*4+5X+1=0
define the extension field K (7 + (') over K. Now we consider the following
diagram:

Gal(K(¢r)/K) = (Z/7Z)*
ol 1
Gal(K(¢r + ¢ )/K) = (2/72)* /{=1},

where w is the cyclotomic character defined as in §2.1 and o is the restriction
map. Let s € Gal(K((7)/K) denote the Frobenius map satisfying

Gal(Kq(¢7)/Kq) = (s)-

Note that we have w(s) = ¢/ € (Z/7Z)*, where f denotes the residue degree
of q. Then we can see the following:

X3 -8X?24+5X 4+ 1 =0mod q has a solution ¢t € O,
— X?—-8X24+5X +1=0 has a solution t’' € O4 (by Hensel’s lemma),
= o(s)=1€Gal(K({+ ¢ Y/K) <= ¢/ =+1mod 7.
This is a contradiction to the fact that £ has By ,-reduction. This completes

the proof of Proposition 3.1. O

We can apply Proposition 3.1 to construct pairs (F,K) as follows: Let
K = Q(v/m) be a quadratic field, where m is a square-free integer. Set t =
a+by/m € O with 2a,2b € Z. Let 0 # u = a®> — mb? € Z denote the norm of
te Ok.

3.1.1. The case p = 5. By Proposition 3.1, consider the condition
(4) t? =11t — 1 € O <= Nmyo(t* — 11t — 1) = £1.
Since we have

Nmyg(t? — 11t — 1) = —4a® — 22(u — 1a +u’ + 123u + 1,
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we see that the condition (4) is equivalent to the condition
(5) X2+ 1l(u—1)X —u? —123u—1=+1

with X = 2a € Z. Note that the equation (5) can be transformed to the Pell
equation

(6) A%? —5B? = +4

with A = 2X + 11(u — 1) € Z and B = 5(u+ 1) € Z. Let ¢ = 155 pe
a fundamental unit of Q(v/5). It is well known that the integer solutions of
the Pell equation (6) are given by the elements +e” for n = 0,1,2,.... Since
B € 57, we note that the solutions of the equation (5) corresponds to the
elements € for n = 0,1, 2, . ... For example, we have that an integer solution
(A,B) = (—11,-5) of the Pell equation (6) corresponds the element —e®> =
711+T5‘/5. Therefore we see that a pair (X, u) = (11, —2) satisfies the condition
(5).

A computation shows that only the pairs

(X, u) = (10,—1), (12, 1), (11, —2), (22, —2), (12, 10), (—111, 10), (10, —12),
(133, —12), (22, 121), (—1342,121), (0, —123), (1364, —123)

satisfy the condition (5) with |u| < 1000. For each pair (X, u), we compute a

solution (a, b, m) and check whether the elliptic curve Et(5), t = a+ by/m over
K = Q(y/m) has B s-reduction as follows:

e For (X,u) = (10,—1), we have a solution (a,b,m) = (5,1,26). We see
that the elliptic curve Et(5), t = a+b+/m has good reduction everywhere
over K = Q(+/26). Therefore Et(5) has By s-reduction.

e For (X,u) = (11,—2), we have a solution (a,b,m) = (1—21, %, 129). We
see that the elliptic curve Et(5), t = a+ by/m has bad reduction only at
the primes of K = Q(v/129) over 2. Therefore Et(5) has By s-reduction.

e For (X,u) = (12,10), we have a solution (a,b,m) = (6,1,26). Since
the elliptic curve Et(5), t = a + by/m has bad reduction at the primes

of K = Q(v/26) over 5, the elliptic curve Et(s) does not have By 5-
reduction.

In Table 1, we list the triples (a,b, m) such that the elliptic curve Et(5), t =
a+by/m over K = Q(y/m) has B s-reduction. Furthermore, for each (a,b, m),
we also list hj(c,) which is computed by using PARI/GP Version 2.4.1 [10].
We note that hg () is divisible by 5.

3.1.2. The case p = 7. As in the case p = 5, consider the condition

(7) t? — 8t + 5t +1 € O < Nmyg(t® — 8> + 5t + 1) = £1
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TABLE 1. List of the triples (a,b,m) with |u| < 1000 such

that Et(s)7 t = a+ by/m over K = Q(y/m) has B s-reduction
(u = a? —mb?)

(X, u) (a,b,m) hk(cs)
(10, —1) (5,1,26) 40
(12,-1) (6,1,37) 5
(11,-2) (Y, 4,129) 10
(22, -2) (11,1,123) 160
(10, —12) (5,1,37) 5
(133, -12) (133 1.17737) 307125

(—1342,121) | (—671,1,450120) 320
(0, —123) (0,1,123) 160
(1364, —123) | (682, 1,465247) | 461194240

TABLE 2. List of the triples (a,b,m) with |u] < 1000 such

that Etm7 t = a+ by/m over K = Q(y/m) has B 7-reduction
(u = a? —mb?)

(X, u) | (a,b,m) [ hic |
6,—1) | (3,1,10) | 28

(77_2) (%a %a57) 56
(8,5) | (4,1,11) | 28

by Proposition 3.1. A computation shows that Nmy q(t* — 8¢* + 5t 4 1)
equal to

8a® + (20u — 32)a* 4 (—16u? — 86u + 10)a + (u® + 54u? + 4u + 1).
Therefore the condition (7) is equivalent to the condition
(8) X%+ (5u—8)X%4 (—8u® —43u+5)X + (u® + 5du’® + du+ 1) = +1
with X = 2a € Z. We see that only the pairs
(Xsu) = (2,1),(6,-1), (7, =1), (7, =2),(8,5), (8,6), (9, 7)

89

is

satisfy the condition (8) with |u| < 1000. As in the case p = 5, in Table 2,
we list the triples (a, b, m) such that the elliptic curve Etm, t = a+ by/m over

K = Q(y/m) has B 7-reduction. We note that hg () is divisible by 7.

Remark. The equation (8) defines a nonsingular projective curve C of genus 1.
It follows from Siegel’s Theorem that the set C(Z) of the integer solutions is
finite. Therefore, unlike the case p = 5, there are only finitely many solutions

(X, u) € Z? of the equation (8).
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3.2. The cases p = 11 and 13

In this subsection, we consider whether we can construct pairs (E, K'), where

E = Et(p) is an elliptic curve over K defined as in §2.2.2 such that E has Bk p-
reduction.

3.2.1. The case p = 11. Let E = Et(ll), t € Z be an elliptic curve over
K = Q(+/d11) defined as in §2.2.2. A computation shows that the discriminant

of E is equal to
3+t —2—ty/dn
2

A(E) = b3, T,

where
T = —t3(t7 + 5% +6t7 +3t5 — 145 — 14¢* + 3 + 1142 - 1)
+t3(t7 4 515 + 5t° — 913 — 6t + 2t +1)\/dy; € Ok.

Furthermore, we have Nmy,q(T) = —4t'% - (t> — t* — 15¢3 + 1442 + 3t — 1).
Let F =5 —t* — 15¢3 + 14t + 3t — 1 € Z. Since A(E) # 0, we see F # +1.
Therefore there exists a prime ¢ with ¢ | F, and hence the elliptic curve E has
bad reduction at some prime q of K over £. We note that the solutions of the
equation
X5 - X' —15X° +14X? 43X —1=0

define the extension field Q((1; + ¢;;') over Q. By a similar argument of the
proof of Proposition 3.1, we have £ = +1 mod 11 if £ # 11. Therefore we have
the following;:

Proposition 3.2. Let £ = Et(u), t € Z be an elliptic curve over K = Q(v/d11)
defined as in §2.2.2. Then E does not have Bk 11-reduction.

3.2.2. The case p = 13. Let E = Et(lg), t € Z be an elliptic curve over
K = Q(+/d13) defined as in §2.2.2. A computation shows that the discriminant
of F is equal to

Bt 42— t/dis
B 2

where T € Ok satisfies Nmyc/q(T) = 4% - (¢ + 1)3 - (3 + 4t + ¢t — 1). Let
F=1t4+4t>+t—1¢€ Z. Since A(E) # 0, we see F' # £1. Therefore there
exists a prime ¢ with £ | F', and hence the elliptic curve FE has bad reduction
at some prime q of K over ¢. Let L be the splitting field of the equation

X3 4+4X24+X -1=0.

Then L is a subfield of Q(¢13 + ¢13') with [Q(¢13 + ¢53') : L] = 2. By a similar
argument of the proof of Proposition 3.1, we have 2 = +1 mod 13 if £ # 13. If
there exists a prime ¢ # 13 such that ¢ | F' and the residue degree of K over ¢
is equal to 2, then the elliptic curve E does not have By i3-reduction. Hence
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we conclude that an elliptic curve Et( 3), t € Z does not have B 13-reduction
with very high probability.

4. Mod p Galois representations

In this section, we consider the irreducibility and surjectivity of pg , for
semistable elliptic curves E over a number field K with q € B ,-reduction.

4.1. Classification of Ok-group schemes of order p

Let K be a number field. Fix a prime number p. We shall review the
classification of Ok-group schemes of order p due to Oort and Tate [9]. Let
M Dbe the set of non-generic points of Spec(Ok ), and let M, denote the set of
p € M such that p divides p. Let F' denote the functor which associates with
each commutative ring R with unity the set F'(R) of isomorphism classes of
R-group schemes of order p. Then Oort and Tate showed that the square

FOk) = Tlpen F(Op)
\ \
FK) = Tlyenm F(EK)

is Cartesian (see [9, Lemma 4]). Let Cx denote the idele class group of K.
Using class field theory, there are canonical bijections

F(K) ~ Homcont(CKaFX)a

P
F(K,) Homeont (K, Fy) (p € M), and
F(Oy)

Homcont(K;/Uva;> (peM\ Mp)v

where Homeon, denotes the set of the continuous homomorphisms and U, is
the group of units in O, (see [9, Lemma 6]). Via these bijections, the arrows
in the above diagram are induced by the canonical homomorphisms K, px — Ck
and K, — K. /U,.

For an Og-group scheme G of order p, we denote by ¢ € Homeons (C, F)
the idele character determined by G® K, and by 1/)5 the corresponding character
of K, for p € M. For each p € M, we let nS = vy(a), where v, is the
normalized discrete valuation of K, and a is the element of O, such that
G ® Op ~ Gy in the notation of [9]. Note that ng; is uniquely determined by
G. Oort and Tate showed the following [9, Theorem 3:

12

12

Theorem 4.1 (Oort-Tate). The map G + (Y, (nf)peMp) gives a bijection
between the isomorphism classes of Ok -group schemes of order p and the sys-
tems (Y, (np)pen,) consisting of a continuous homomorphism ¢ : Cx — FJ
and for each p € M), an integer ny, with 0 < n, < ey, which satisfy the following
conditions:

(A) Forpe M\ My, v is unramified at p, i.e., Y,(Upy) =1,

(B) Forp e My, ¢p(u) = (Nmy, /r, (@), Yu € Uy, where u + U denotes

the residue class map.
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Here ¢y : K, — ) denotes the local character induced by 1 via the canonical
map K, — Ck.

For a given family (np)pens,, there is no idele class character 1 satisfying
the conditions (A) and (B) of Theorem 4.1, or the set of all idele characters
is a principal homogeneous space under the group of homomorphisms of the
narrow class group of K into F;;. Therefore, if the narrow class number h}
of K is prime to (p — 1), there is at most one ¢ for a given family (np)pens, -
Furthermore, for an Ok-group scheme G of order p corresponding to (np)pens, ,
the Cartier dual of G' corresponds to (e, — np)pen, -

4.2. Irreducibility and surjectivity of pg ,

Let p be a prime number. Let E be an elliptic curve over a number field K.
If the representation pp ,, is reducible, then we have

_ ¢1 * . .
(9) pE’pN(O ¢2 ,(bi.GK%F;,’L:l,Q.
We note that each character ¢; induces ¢, : Gal(K*"/K) — F, where K" is
the maximal abelian extension field of K.

Proposition 4.2. Assume that E is a semistable elliptic curve with good re-
duction at the primes of K over p. Then each character ¢; gives an Ok -group
scheme G of order p with & = ¢, 0o ok, where of : Crx — Gal(K*P/K) is the
reciprocity map.

Proof. Since E has good reduction at the primes p of K over p, the p-torsion
subgroup E[p] is an Op-group scheme. Therefore it follows that ¢; has a struc-
ture of an Op-group scheme of order p. Let Sg denote the set of the primes of
K at which E has bad reduction. Let g be a prime of K with q 1t p.

e In the case q € Sg, the representation pg, , is unramified at q by the cri-
terion of Néron-Ogg-Shafarevich (see [12, Chapter VII, Theorem 7.1]).
Hence ¢; is unramified at q.
o In the case q € Sg, there exists an unramified extension field L over
K, of degree 1 or 2 such that E is isomorphic to the Tate curve FE,
over L, where ¢ is the Tate parameter (see [11, §1.12]). By the theory
of Tate curves, we have E(L) ~ " /q%. With this identification, we
clearly have E[p] ~ (¢, - Q%)/q%, where Q = ¢"/? € T is a fixed p-th
root of g. Therefore the representation pg, , restricted to Gal(L/L) has
the form ((1, ;‘(), where x is the cyclotomic character. Hence it follows
that ¢; is unramified at q.
The above argument shows that ¢; is unramified at the primes q of K with
q 1 p. Therefore we can see that the character ¢; o o satisfies the conditions
(A) and (B) of Theorem 4.1. This completes the proof. d
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Let K be a cubic field. We next consider the structure of Ox-group schemes
of order p. Our result is as follows:

Proposition 4.3. Let p be an odd prime number. Let K be a cubic field with
ged(p — 1,h};) = 1. If p satisfies either the condition (A) or (B) of Theorem
1.2, then the only O -group schemes of order p are Z/pZ and w,, where Z/pZ
(resp. pp) is a constant (resp. diagonalizable) group scheme.

Proof. In the case where p is prime in Ok, this is prove by Oort-Tate [9].
We next consider the case where p is not prime in Og. For simplicity, we only
consider the case where K is a complex number field. Assume p { Nmg q(u—1),
where u is a fundamental unit of K such that v > 0 with respect to the only
one real place of K.

The basic idea is based on [4]. We first consider the case pOx = pipa,
where pq,p2 are the primes of K over p. For the family (n,,,n,,) = (1,0),
we assume that there is an idele class character ¢ : Cx — F, satisfying
the conditions (A) and (B) of Theorem 4.1. According to class field theory,
there is a modulus of the form m = oo - p; such that ¥ induces a surjective
homomorphism v : C,,, — 7, where Cy, is the ray class group of K modulus
m. Let C be the narrow class group of K. There is an exact sequence [8]

1= U /Un1 — (Ok/p1)* = Cn — Coo — 1,

where U™ is the group of totally positive units of K and Uy, 1 is the subgroup of
the elements of U™ which are congruent to 1 modulo p;. Since ged(p—1, h}}) =
1, we see that a composition of the following maps

: (Orc/p1)* = C 5 FX

is an isomorphism. Since u € U™ and the image of U™ is in the kernel of the
isomorphism ®, we have u— 1 € p;. This is a contradiction to the condition p 1
Nmp/q(u—1). Therefore there is no idele character 1 satisfying the conditions
(A) and (B) of Theorem 4.1 for the family (ny,,np,) = (1,0). Furthermore,
considering the Cartier dual, the same result holds for the family (ny,,n,,) =
(1,1). A similar argument shows that there is no idele class character for
families (np,,np,) = (0,1), (2,0). Therefore the only Og-group schemes of
order p are Z/pZ and p, by Theorem 4.1.

In the case where pOx = p3, p1paps or p1p2, a similar argument as above
shows the same result. This completes the proof. (I

We note that Theorem 1.1 holds for the primes p > 3 when E is restricted
to be semistable. Combining Propositions 4.2 and 4.3 with Theorem 1.1, we
can prove Theorem 1.2 as follows:

Proof of Theorem 1.2. The idea is based on the proof of [7, Theorem 4] or [4,
Théoreéme]. Suppose that b, is reducible. Then pg , has the form (9). Since
o1+ P2 = ¥, it follows from Propositions 4.2 and 4.3 that either of ¢; is a trivial
character. Hence we see that E or E' = E/u, has a p-torsion point. Since E
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and E’ have bad reduction at same primes, this is a contradiction to Theorem
1.1. This completes the proof of Theorem 1.2. (]

Example. Let K be a cubic field with h}"( = 1. Let E be an elliptic curve over
K with everywhere good reduction. By Theorem 1.2, we obtain the following
results on the irreducibility of pg, ,:

e Let K = Q[z]/(f(x)) be a complex cubic field defined by f(x) = 23 +
x — 1. We have that the element z € O is a fundamental unit of
K with z > 0 and NmK/Q(ac —1) = 1. We also have 30k = pip2
with f; = 1 and fo = 2, where f; is the residue degree of p;. Since
BE(kp,) <3+1+ 21/3 < 8, the elliptic curve E has no p-torsion points
for the primes p > 11. By a similar argument of the proof of Theorem
1.2, we see that pg , is irreducible for the primes p > 11. Furthermore,
since hp(c,) = 1 for p = 3,5 and 7, it follows from Theorem 1.2 that
Pk p is irreducible for p = 3,5 and 7. Therefore we have that pg , is
irreducible for the primes p > 3.

e Let K = Q[z]/(f(z)) be a totally real cubic field defined by f(z) =
23 — 22 — 3z — 1. We have that elements z, 2> — 22 € Ok are two
independent fundamental units of K with Nmg g(z*> — 1) = 4 and
Nmg/q((z* —22)* — 1) = 16. We also have 20 = p®. Since §E(k,) <
24+ 1+ 2v2 < 7, the elliptic curve E has no p-torsion points for the
primes p > 7. By a similar argument of the proof of Theorem 1.2, we
see that pg , is irreducible for the primes p > 7. Furthermore, since
hi(c;) = 1 and hg(¢;) = 2, it follows from Theorem 1.2 that pg , is
irreducible for p = 3 and 5. Therefore we have that pp , is irreducible
for the primes p > 3.

We give the following result mainly due to Serre [11]:

Proposition 4.4. Let K be a number field with h}"( =1 and let Dk denote
the discriminant of K. Let E be a semistable elliptic curve over K with the
j-invariant jg. Let p be a prime such that p{ Di. If p = 2,3 or 5, suppose
ptv(jg) for some v € Sg, where Sg is the set of the finite places v at which
E has bad reduction. If pg ,, is irreducible, then pg , is surjective.

Proof. See the proof of [11, Proposition 21] or [4, §3]. O

Combining the above result with Theorem 1.2, we obtain the following result
on the surjectivity of pg .

Theorem 4.5. Let K be a cubic field with h;r( =1 and let Dg denote the
discriminant of K. Let p be an odd prime number such that pt Dy . Suppose
that p { hi(,) and ey < p — 1 for the primes p of K over p. Let E be a
semistable elliptic curve over K with B p-reduction. If p = 3 or 5, suppose
p {1 v(jg) for some v € Sg. If p satisfies either the condition (A) or (B) of
Theorem 1.2, then pg , is surjective.



TORSION POINTS OF ELLIPTIC CURVES WITH BAD REDUCTION II 95

Remark. In the case where K = Q or K is a quadratic field, we can show
similar results of Theorems 1.2 and 4.5 (see also [4] in the case where K is a
quadratic field). However, in general, it does not hold in the case [K : Q] > 4.

4.3. K (¢p)-rational points of order p

Let K be a number field. Let E be an elliptic curve over K with a p-torsion
point. There exist an elliptic curve E* over K and a K-isogeny ' — E* with
kernel Z/pZ. By the exact sequence (1), we have u, C E* and hence E* has
a K ((p)-rational point of order p. For an elliptic curve E over K with By p-
reduction, we here consider the existence of a K ({,)-rational point of E of order
p. By Theorem 1.2, we obtain the following result (cf. Theorem 1.1):

Proposition 4.6. Let p be an odd prime number. Let K be a cubic field with
ged(p — 1,h%;) = 1. Suppose that p t K(¢,) and e, < p — 1 for the primes p
of K over p. Let E be a semistable elliptic curve over K with B ,-reduction.
If p satisfies either (A) or (B) of Theorem 1.2, then E has no K((,)-rational
points of order p.

Proof. Suppose that E has a K ({,)-rational point of order p. Set L = K(E[p])
and M = K((p). Let G be a simple subgroup of E[p| as a Gal(L/K)-module.
Set S, = Gal(L/M). We may assume that S, is non-trivial. Then the order of
S, is equal to p. Since S,<1Gal(L/K), we see that the set G(K)®» of the S,-fixed
points is a Gal(L/K )-submodule of G(K). Since 1G(K) = $G(K)® mod p, the
group G(K)% is non-trivial, and hence G(K) = G(K)S» because G is simple.
Then G(K) is a Gal(M/K)-module. Since the group Gal(M/K) has exponent
dividing p — 1, the F,[Gal(M /K )]-module G(K) is a product of 1-dimensional
eigenspaces. Since G is simple, there is only one such eigenspace, and hence G
has order p. Therefore the representation pg , is reducible. But this contradicts
to Theorem 1.2. This completes the proof of Proposition 4.6. O
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