Bull. Korean Math. Soc. ${\bf 50}$ (2013), No. 1, pp. 83–96 http://dx.doi.org/10.4134/BKMS.2013.50.1.083

TORSION POINTS OF ELLIPTIC CURVES WITH BAD REDUCTION AT SOME PRIMES II

Masaya Yasuda

ABSTRACT. Let K be a number field and fix a prime number p. For any set S of primes of K, we here say that an elliptic curve E over K has S-reduction if E has bad reduction only at the primes of S. There exists the set $B_{K,p}$ of primes of K satisfying that any elliptic curve over K with $B_{K,p}$ -reduction has no p-torsion points under certain conditions. The first aim of this paper is to construct elliptic curves over K with $B_{K,p}$ reduction and a p-torsion point. The action of the absolute Galois group on the p-torsion subgroup of E gives its associated Galois representation $\overline{\rho}_{E,p}$ modulo p. We also study the irreducibility and surjectivity of $\overline{\rho}_{E,p}$ for semistable elliptic curves with $B_{K,p}$ -reduction.

1. Introduction

Let E be an elliptic curve over a number field K. For a prime number p, the *p*-torsion points of E are the points of finite order p in the Mordell-Weil group E(K). In [14], we studied the existence of a *p*-torsion points of E which has bad reduction only at some primes, and showed the following [14, Theorem 1.2]. Let ζ_p denote a fixed primitive *p*-th root of unity.

Theorem 1.1. Let K be a number field. Let $p \ge 5$ be a prime number such that the ramification index e_p satisfies $e_p < p-1$ for the primes p of K over p. Set

 $B_{K,p} = \{ \mathfrak{q} : prime \text{ of } K \text{ over a prime } \ell \mid \ell \neq p \text{ and } \ell^f \not\equiv \pm 1 \bmod p \},$

where f is the residue degree of \mathfrak{q} . Let E be an elliptic curve over K with $B_{K,p}$ -reduction. If p does not divide the class number $h_{K(\zeta_p)}$ of $K(\zeta_p)$, then E has no p-torsion points.

Fix a prime number $p \ge 5$ with $e_{\mathfrak{p}} < p-1$ for the primes \mathfrak{p} of K over p. It follows by Theorem 1.1 that $h_{K(\zeta_p)}$ is divisible by p if there exists E over K with $B_{K,p}$ -reduction and a p-torsion point. The motivation of this paper arises from the question whether we can construct such pairs (E, K). We here focus

 $\bigodot 2013$ The Korean Mathematical Society

Received April 25, 2011; Revised May 7, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 14H52; Secondary 14G05.

 $Key \ words \ and \ phrases.$ reduction of elliptic curves, torsion points, Galois representation.

on the case where K is a quadratic field. Kamienny [2] and Kenku-Momose [3] classified the possible torsion subgroups of elliptic curves over quadratic fields K, and showed that any elliptic curve over K cannot have p-torsion points for the primes $p \ge 17$. Hence it is sufficient to consider the cases p = 5, 7, 11 and 13. In the cases p = 5 and 7, we construct such pairs (E, K) using Kubert's parametrization [5, Table 3] for an infinite family of elliptic curves with a p-torsion point. Furthermore, we list such pairs (E, K) and their $h_{K(\zeta_p)}$. For the cases p = 11 and 13, Jeon, Kim and Lee [1] gave an infinite family of elliptic curves to the cases p = 5 and 7, we show that an elliptic curve from the family given by Jeon, Kim and Lee cannot have $B_{K,p}$ -reduction with very high probability.

Let G_K denote the absolute Galois group $\operatorname{Gal}(\overline{K}/K)$. The action of G_K on the *p*-torsion subgroup E[p] gives its associated Galois representation

$$\overline{\rho}_{E,p}: G_K \to \operatorname{Aut}(E[p]) \simeq \operatorname{GL}_2(\mathbb{F}_p)$$

modulo p. We also study the irreducibility and surjectivity of $\overline{\rho}_{E,p}$ for semistable elliptic curves E with $B_{K,p}$ -reduction. Using a part of Serre's results [11], Mazur [7] studied the surjectivity of $\overline{\rho}_{E,p}$ for semistable elliptic curves E over \mathbb{Q} . Furthermore, Kraus [4] extended Mazur's work to the case where K is a quadratic field. We then focus on the case where K is a cubic field. We mainly consider the irreducibility of $\overline{\rho}_{E,p}$. If $\overline{\rho}_{E,p}$ is reducible, then we have

$$\overline{\rho}_{E,p} \sim \begin{pmatrix} \phi_1 & * \\ 0 & \phi_2 \end{pmatrix},$$

where $\phi_i : G_K \to \mathbb{F}_p^{\times}$ is a character for i = 1, 2. For semistable elliptic curves E with good reduction at the primes of K over p, we show that each ϕ_i has a structure of an \mathcal{O}_K -group scheme of order p, where \mathcal{O}_K is the ring of integers of K. Our main idea is to classify the structure of \mathcal{O}_K -group schemes of order p for cubic fields K and show that either of ϕ_i is a trivial character under certain conditions. We obtain the following result on the irreducibility of $\overline{\rho}_{E,p}$.

Theorem 1.2. Let p be an odd prime number. Let K be a cubic field with $gcd(p-1,h_K^+) = 1$, where h_K^+ is the narrow class number of K. Suppose that $p \nmid h_{K(\zeta_p)}$ and $e_{\mathfrak{p}} < p-1$ for the primes \mathfrak{p} of K over p. Let E be a semistable elliptic curve over K with $B_{K,p}$ -reduction. If p satisfies either of the following conditions, then $\overline{\rho}_{E,p}$ is irreducible.

- (A) p is prime in \mathcal{O}_K .
- (B) In the case where K is a totally real cubic field, we have $p \nmid \operatorname{Nm}_{K/\mathbb{Q}}(u^2 1)$ or $\operatorname{Nm}_{K/\mathbb{Q}}(v^2 1)$, where u, v are two independent fundamental units of K and $\operatorname{Nm}_{K/\mathbb{Q}}$ denotes the norm map. In the case where K is a complex cubic field, we have $p \nmid \operatorname{Nm}_{K/\mathbb{Q}}(u-1)$, where u is a fundamental unit of K such that u > 0 with respect to the only one real place of K.

Notation. The symbols \mathbb{Z} , and \mathbb{Q} denote, respectively, the ring of integers, and the field of rational numbers. For a prime p, the finite field with p elements

is denoted by \mathbb{F}_p . We denote the *p*-adic integers and the *p*-adic number field by \mathbb{Z}_p and \mathbb{Q}_p . Let \mathcal{O}_K denote the ring of integers of a number field *K*. For a prime \mathfrak{p} of *K*, let $\mathcal{O}_{\mathfrak{p}}$ denote the completion of \mathcal{O}_K at \mathfrak{p} , $k_{\mathfrak{p}}$ its residue field, and $K_{\mathfrak{p}}$ the field of fractions of $\mathcal{O}_{\mathfrak{p}}$.

2. Preliminaries

In this section, we consider the property of elliptic curves with $B_{K,p}$ -reduction and a *p*-torsion point. We also review families of elliptic curves with a *p*-torsion point.

2.1. Elliptic curves with $B_{K,p}$ -reduction and a p-torsion point

Let K be a number field. Fix a prime number $p \ge 5$ with $e_{\mathfrak{p}} < p-1$ for the primes \mathfrak{p} of K over p. If there exists an elliptic curve with $B_{K,p}$ -reduction and a p-torsion point, it follows by Theorem 1.1 that $p \mid h_{K(\zeta_p)}$ and hence $A_{K(\zeta_p)} \ne 0$, where A_F denotes the p-part of the ideal class group of a number field F. Furthermore, we can see the following property.

Let *E* be an elliptic curve over *K* with $B_{K,p}$ -reduction and a *p*-torsion point *P*. Using the Weil-pairing $e_p : E[p] \times E[p] \to \mu_p$, we define a map $\psi : E[p] \to \mu_p$ by $Q \mapsto e_p(P,Q)$, where μ_p denotes the set of the *p*-th root of unity. Since the point *P* is rational over *K*, this map gives an exact sequence

(1)
$$0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \longrightarrow E[p] \xrightarrow{\psi} \mu_p \longrightarrow 0$$

of G_K -modules, where $\mathbb{Z}/p\mathbb{Z}$ denotes the constant G_K -module generated by P. Let L = K(E[p]) denote the field generated by the points of E[p]. By [14, Poof of Theorem 1.2], we may assume that L is an unramified extension of $K(\zeta_p)$ of degree p. The representation $\overline{\rho}_{E,p}$ induces the representation

$$\rho : \operatorname{Gal}(L/K) \to \operatorname{GL}_2(\mathbb{F}_p).$$

We note that ρ is faithful and of the form $\begin{pmatrix} 1 & * \\ 0 & \omega \end{pmatrix}$ by the exact sequence (1) where

$$\omega : \Delta \to \mathbb{F}_p^{\times}, \quad \Delta = \operatorname{Gal}(K(\zeta_p)/K)$$

denotes the cyclotomic character defined by $\sigma(\zeta_p) = \zeta_p^{\omega(\sigma)}$ for every $\sigma \in \Delta$. We see that ρ does not split by the assumption $L \neq K(\zeta_p)$, and hence the group $\operatorname{Gal}(L/K(\zeta_p))$ is isomorphic to the subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$ consisting of all matrices of the form $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ under the representation ρ . We now consider the action of Δ on $\operatorname{Gal}(L/K(\zeta_p))$ by conjugation in $\operatorname{Gal}(L/K)$. Consider Δ as a subgroup of \mathbb{F}_p^{\times} under the cyclotomic character ω and fix $a \in \Delta \subset \mathbb{F}_p^{\times}$. Since conjugating $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ by $a \in \mathbb{F}_p^{\times}$ gives $\begin{pmatrix} 1 & k/a \\ 0 & 1 \end{pmatrix}$, we see that $a \in \Delta \subset \mathbb{F}_p^{\times}$ acts on $\operatorname{Gal}(L/K(\zeta_p))$ as multiplication by a^{-1} . Then we have $A_{K(\zeta_p)}^{\omega^{-1}} \neq 0$, where R^{ω^i} denotes the ω^i -eigenspace of a $\mathbb{Z}_p[\Delta]$ -module R as in the notation of [13, §6.3].

2.2. Families of elliptic curves with a *p*-torsion point

2.2.1. The cases p = 5 and 7. Let *E* be an elliptic curve over a number field *K* with a *p*-torsion point *P*. The following result is well-known ([5, 12] for details): For p = 5, there exists a unique $t \in K \setminus \{0\}$ such that *E* is isomorphic to an elliptic curve defined by the equation

$$E_t^{(5)}: y^2 + (1-t)xy - ty = x^3 - tx^2$$

and the 5-torsion point P corresponds to (0,0) under the isomorphism. The discriminant of $E_t^{(5)}$ is

(2)
$$\Delta(E_t^{(5)}) = t^5(t^2 - 11t - 1).$$

Similarly, for p = 7, there exists a unique $t \in K \setminus \{0, 1\}$ such that E is isomorphic to an elliptic curve defined by the equation

$$E_t^{(7)}: y^2 + (1+t-t^2)xy + (t^2-t^3)y = x^3 + (t^2-t^3)x^2$$

and the 7-torsion point P corresponds to (0,0) under the isomorphism. The discriminant of $E_t^{(7)}$ is

(3)
$$\Delta(E_t^{(7)}) = t^7 (t-1)^7 (t^3 - 8t^2 + 5t + 1).$$

2.2.2. The cases p = 11 and 13. For p = 11 and 13, Jeon, Kim and Lee gave an infinite family of elliptic curves $E_t^{(p)}, t \in \mathbb{Q}$ over quadratic fields $\mathbb{Q}(\sqrt{d_p})$ having a *p*-torsion point as follows (see [1, Section 3] for details): For p = 11, set

$$\begin{cases} b_{11} &= -\frac{1}{4}t(t-1)(t^2+1-\sqrt{d_{11}})(t^3+t-2-t\sqrt{d_{11}}), \\ c_{11} &= \frac{1}{2}t(t-1)(t^2+1-\sqrt{d_{11}}), \\ d_{11} &= t^4+2t^2-4t+1. \end{cases}$$

On the other hand, for p = 13, set

$$\begin{cases} b_{13} &= -\frac{t(t^4 - t^2 + t + 1 - (t-1)\sqrt{d_{13}})(t^3 + t^2 + 1 - \sqrt{d_{13}})(t^4 + t^3 + t + 2 - t\sqrt{d_{13}})}{4(t^3 + t^2 - 1 - \sqrt{d_{13}})} \\ c_{13} &= -\frac{t(t^3 + t^2 + 1 - \sqrt{d_{13}})(t^4 - t^2 + t + 1 - (t-1)\sqrt{d_{13}})}{2(t^3 + t^2 - 1 - \sqrt{d_{13}})}, \\ d_{13} &= t^6 + 2t^5 + t^4 + 2t^3 + 6t^2 + 4t + 1. \end{cases}$$

Let p = 11 or 13. Let $E_t^{(p)}$ be an elliptic curve over a quadratic field $\mathbb{Q}(\sqrt{d_p})$ defined by the equation

$$E_t^{(p)}: y^2 + (1 - c_p)xy - b_p y = x^3 - b_p x^2$$

with $t \in \mathbb{Q}$. Then $E_t^{(p)}$ has a *p*-torsion point (0,0).

3. A construction of elliptic curves with $B_{K,p}$ -reduction and a *p*-torsion point (quadratic field case)

Throughout this section, let K be a quadratic field.

87

3.1. The cases p = 5 and 7

In this subsection, we construct pairs (E, K), where E is an elliptic curve over K with $B_{K,p}$ -reduction and a p-torsion point. To construct such pairs, we give the following result:

Proposition 3.1. Let p = 5 or 7. Let $E = E_t^{(p)}$, $t \in \mathcal{O}_K$ be an elliptic curve over defined as in §2.2.1. Suppose that E has $B_{K,p}$ -reduction. Then we have

$$\begin{cases} t^2 - 11t - 1 \in \mathcal{O}_K^{\times} & \text{if } p = 5, \\ t^3 - 8t^2 + 5t + 1 \in \mathcal{O}_K^{\times} & \text{if } p = 7. \end{cases}$$

Proof. For simplicity, we only consider the case p = 7. Assume $t^3 - 8t^2 + 5t + 1 \notin \mathcal{O}_K^{\times}$. Then there exists a prime ℓ dividing $t^3 - 8t^2 + 5t + 1 \in \mathcal{O}_K$. By the equation (3), the elliptic curve E has bad reduction at some prime \mathfrak{q} of K over ℓ . Since E has $B_{K,p}$ -reduction, we may assume $\ell \neq 7$. We note that the solutions of the equation

$$X^3 - 8X^2 + 5X + 1 = 0$$

define the extension field $K(\zeta_7 + \zeta_7^{-1})$ over K. Now we consider the following diagram:

$$\begin{array}{cccc} \operatorname{Gal}(K(\zeta_7)/K) & \stackrel{\omega}{\hookrightarrow} & (\mathbb{Z}/7\mathbb{Z})^{\times} \\ \sigma \downarrow & & \downarrow \\ \operatorname{Gal}(K(\zeta_7 + \zeta_7^{-1})/K) & \hookrightarrow & (\mathbb{Z}/7\mathbb{Z})^{\times}/\{\pm 1\}, \end{array}$$

where ω is the cyclotomic character defined as in §2.1 and σ is the restriction map. Let $s \in \text{Gal}(K(\zeta_7)/K)$ denote the Frobenius map satisfying

$$\operatorname{Gal}(K_{\mathfrak{q}}(\zeta_7)/K_{\mathfrak{q}}) = \langle s \rangle.$$

Note that we have $\omega(s) = \ell^f \in (\mathbb{Z}/7\mathbb{Z})^{\times}$, where f denotes the residue degree of \mathfrak{q} . Then we can see the following:

 $X^3 - 8X^2 + 5X + 1 = 0 \mod \mathfrak{q}$ has a solution $t \in \mathcal{O}_K$,

 $\implies X^3 - 8X^2 + 5X + 1 = 0 \text{ has a solution } t' \in \mathcal{O}_{\mathfrak{q}} \text{ (by Hensel's lemma),}$ $\implies \sigma(s) = 1 \in \operatorname{Gal}(K(\zeta_7 + \zeta_7^{-1})/K) \Longleftrightarrow \ell^f \equiv \pm 1 \mod 7.$

This is a contradiction to the fact that E has $B_{K,p}$ -reduction. This completes the proof of Proposition 3.1.

We can apply Proposition 3.1 to construct pairs (E, K) as follows: Let $K = \mathbb{Q}(\sqrt{m})$ be a quadratic field, where m is a square-free integer. Set $t = a + b\sqrt{m} \in \mathcal{O}_K$ with $2a, 2b \in \mathbb{Z}$. Let $0 \neq u = a^2 - mb^2 \in \mathbb{Z}$ denote the norm of $t \in \mathcal{O}_K$.

3.1.1. The case p = 5. By Proposition 3.1, consider the condition

(4)
$$t^2 - 11t - 1 \in \mathcal{O}_K^{\times} \Longleftrightarrow \operatorname{Nm}_{K/\mathbb{Q}}(t^2 - 11t - 1) = \pm 1.$$

Since we have

$$Nm_{K/\mathbb{Q}}(t^2 - 11t - 1) = -4a^2 - 22(u - 1)a + u^2 + 123u + 1,$$

we see that the condition (4) is equivalent to the condition

(5)
$$X^{2} + 11(u-1)X - u^{2} - 123u - 1 = \pm 1$$

with $X = 2a \in \mathbb{Z}$. Note that the equation (5) can be transformed to the Pell equation

(6)
$$A^2 - 5B^2 = \pm 4$$

with $A = 2X + 11(u - 1) \in \mathbb{Z}$ and $B = 5(u + 1) \in \mathbb{Z}$. Let $\epsilon = \frac{1+\sqrt{5}}{2}$ be a fundamental unit of $\mathbb{Q}(\sqrt{5})$. It is well known that the integer solutions of the Pell equation (6) are given by the elements $\pm \epsilon^n$ for $n = 0, 1, 2, \ldots$. Since $B \in 5\mathbb{Z}$, we note that the solutions of the equation (5) corresponds to the elements $\pm \epsilon^{5n}$ for $n = 0, 1, 2, \ldots$. For example, we have that an integer solution (A, B) = (-11, -5) of the Pell equation (6) corresponds the element $-\epsilon^5 = -\frac{11+5\sqrt{5}}{2}$. Therefore we see that a pair (X, u) = (11, -2) satisfies the condition (5).

A computation shows that only the pairs

$$(X, u) = (10, -1), (12, -1), (11, -2), (22, -2), (12, 10), (-111, 10), (10, -12), (133, -12), (22, 121), (-1342, 121), (0, -123), (1364, -123)$$

satisfy the condition (5) with |u| < 1000. For each pair (X, u), we compute a solution (a, b, m) and check whether the elliptic curve $E_t^{(5)}$, $t = a + b\sqrt{m}$ over $K = \mathbb{Q}(\sqrt{m})$ has $B_{K,5}$ -reduction as follows:

- For (X, u) = (10, -1), we have a solution (a, b, m) = (5, 1, 26). We see that the elliptic curve $E_t^{(5)}$, $t = a + b\sqrt{m}$ has good reduction everywhere over $K = \mathbb{Q}(\sqrt{26})$. Therefore $E_t^{(5)}$ has $B_{K,5}$ -reduction.
- For (X, u) = (11, -2), we have a solution $(a, b, m) = (\frac{11}{2}, \frac{1}{2}, 129)$. We see that the elliptic curve $E_t^{(5)}$, $t = a + b\sqrt{m}$ has bad reduction only at the primes of $K = \mathbb{Q}(\sqrt{129})$ over 2. Therefore $E_t^{(5)}$ has $B_{K,5}$ -reduction.
- For (X, u) = (12, 10), we have a solution (a, b, m) = (6, 1, 26). Since the elliptic curve $E_t^{(5)}$, $t = a + b\sqrt{m}$ has bad reduction at the primes of $K = \mathbb{Q}(\sqrt{26})$ over 5, the elliptic curve $E_t^{(5)}$ does not have $B_{K,5}$ reduction.

In Table 1, we list the triples (a, b, m) such that the elliptic curve $E_t^{(5)}$, $t = a + b\sqrt{m}$ over $K = \mathbb{Q}(\sqrt{m})$ has $B_{K,5}$ -reduction. Furthermore, for each (a, b, m), we also list $h_{K(\zeta_5)}$ which is computed by using PARI/GP Version 2.4.1 [10]. We note that $h_{K(\zeta_5)}$ is divisible by 5.

3.1.2. The case p = 7. As in the case p = 5, consider the condition

(7)
$$t^3 - 8t^2 + 5t + 1 \in \mathcal{O}_K^{\times} \iff \operatorname{Nm}_{K/\mathbb{O}}(t^3 - 8t^2 + 5t + 1) = \pm 1$$

TABLE 1. List of the triples (a, b, m) with |u| < 1000 such that $E_t^{(5)}$, $t = a + b\sqrt{m}$ over $K = \mathbb{Q}(\sqrt{m})$ has $B_{K,5}$ -reduction $(u = a^2 - mb^2)$

(X, u)	(a,b,m)	$h_{K(\zeta_5)}$
(10, -1)	(5, 1, 26)	40
(12, -1)	(6, 1, 37)	5
(11, -2)	$(\frac{11}{2}, \frac{1}{2}, 129)$	10
(22, -2)	$(\tilde{11}, \tilde{1}, 123)$	160
(10, -12)	(5, 1, 37)	5
(133, -12)	$(\frac{133}{2}, \frac{1}{2}, 17737)$	307125
(-1342, 121)	(-671, 1, 450120)	320
(0, -123)	(0, 1, 123)	160
(1364, -123)	(682, 1, 465247)	461194240

TABLE 2. List of the triples (a, b, m) with |u| < 1000 such that $E_t^{(7)}$, $t = a + b\sqrt{m}$ over $K = \mathbb{Q}(\sqrt{m})$ has $B_{K,7}$ -reduction $(u = a^2 - mb^2)$

(X, u)	(a,b,m)	$h_{K(\zeta_7)}$
(6, -1)	(3, 1, 10)	28
(7, -2)	$(\frac{7}{2}, \frac{1}{2}, 57)$	56
(8, 5)	$(\tilde{4}, \tilde{1}, 11)$	28

by Proposition 3.1. A computation shows that $\operatorname{Nm}_{K/\mathbb{Q}}(t^3 - 8t^2 + 5t + 1)$ is equal to

$$8a^{3} + (20u - 32)a^{2} + (-16u^{2} - 86u + 10)a + (u^{3} + 54u^{2} + 4u + 1).$$

Therefore the condition (7) is equivalent to the condition

(8) $X^{2} + (5u - 8)X^{2} + (-8u^{2} - 43u + 5)X + (u^{3} + 54u^{2} + 4u + 1) = \pm 1$

with $X = 2a \in \mathbb{Z}$. We see that only the pairs

$$(X, u) = (2, 1), (6, -1), (7, -1), (7, -2), (8, 5), (8, 6), (9, 7)$$

satisfy the condition (8) with |u| < 1000. As in the case p = 5, in Table 2, we list the triples (a, b, m) such that the elliptic curve $E_t^{(7)}$, $t = a + b\sqrt{m}$ over $K = \mathbb{Q}(\sqrt{m})$ has $B_{K,7}$ -reduction. We note that $h_{K(\zeta_7)}$ is divisible by 7.

Remark. The equation (8) defines a nonsingular projective curve C of genus 1. It follows from Siegel's Theorem that the set $C(\mathbb{Z})$ of the integer solutions is finite. Therefore, unlike the case p = 5, there are only finitely many solutions $(X, u) \in \mathbb{Z}^2$ of the equation (8).

3.2. The cases p = 11 and 13

In this subsection, we consider whether we can construct pairs (E, K), where $E = E_t^{(p)}$ is an elliptic curve over K defined as in §2.2.2 such that E has $B_{K,p}$ -reduction.

3.2.1. The case p = 11. Let $E = E_t^{(11)}$, $t \in \mathbb{Z}$ be an elliptic curve over $K = \mathbb{Q}(\sqrt{d_{11}})$ defined as in §2.2.2. A computation shows that the discriminant of E is equal to

$$\Delta(E) = -\frac{t^3 + t - 2 - t\sqrt{d_{11}}}{2} \cdot b_{11}^3 \cdot T,$$

where

$$T = -t^{3}(t^{9} + 5t^{8} + 6t^{7} + 3t^{6} - 14t^{5} - 14t^{4} + t^{3} + 11t^{2} - 1) + t^{3}(t^{7} + 5t^{6} + 5t^{5} - 9t^{3} - 6t^{2} + 2t + 1)\sqrt{d_{11}} \in \mathcal{O}_{K}.$$

Furthermore, we have $\operatorname{Nm}_{K/\mathbb{Q}}(T) = -4t^{10} \cdot (t^5 - t^4 - 15t^3 + 14t^2 + 3t - 1)$. Let $F = t^5 - t^4 - 15t^3 + 14t^2 + 3t - 1 \in \mathbb{Z}$. Since $\Delta(E) \neq 0$, we see $F \neq \pm 1$. Therefore there exists a prime ℓ with $\ell \mid F$, and hence the elliptic curve E has bad reduction at some prime \mathfrak{q} of K over ℓ . We note that the solutions of the equation

$$X^5 - X^4 - 15X^3 + 14X^2 + 3X - 1 = 0$$

define the extension field $\mathbb{Q}(\zeta_{11} + \zeta_{11}^{-1})$ over \mathbb{Q} . By a similar argument of the proof of Proposition 3.1, we have $\ell \equiv \pm 1 \mod 11$ if $\ell \neq 11$. Therefore we have the following:

Proposition 3.2. Let $E = E_t^{(11)}$, $t \in \mathbb{Z}$ be an elliptic curve over $K = \mathbb{Q}(\sqrt{d_{11}})$ defined as in §2.2.2. Then E does not have $B_{K,11}$ -reduction.

3.2.2. The case p = 13. Let $E = E_t^{(13)}$, $t \in \mathbb{Z}$ be an elliptic curve over $K = \mathbb{Q}(\sqrt{d_{13}})$ defined as in §2.2.2. A computation shows that the discriminant of E is equal to

$$\Delta(E) = \frac{t^4 + t^3 + t + 2 - t\sqrt{d_{13}}}{2} \cdot b_{13}^3 \cdot T,$$

where $T \in \mathcal{O}_K$ satisfies $\operatorname{Nm}_{K/\mathbb{Q}}(T) = 4t^6 \cdot (t+1)^3 \cdot (t^3 + 4t^2 + t - 1)$. Let $F = t^3 + 4t^2 + t - 1 \in \mathbb{Z}$. Since $\Delta(E) \neq 0$, we see $F \neq \pm 1$. Therefore there exists a prime ℓ with $\ell \mid F$, and hence the elliptic curve E has bad reduction at some prime \mathfrak{q} of K over ℓ . Let L be the splitting field of the equation

$$X^3 + 4X^2 + X - 1 = 0.$$

Then *L* is a subfield of $\mathbb{Q}(\zeta_{13} + \zeta_{13}^{-1})$ with $[\mathbb{Q}(\zeta_{13} + \zeta_{13}^{-1}) : L] = 2$. By a similar argument of the proof of Proposition 3.1, we have $\ell^2 \equiv \pm 1 \mod 13$ if $\ell \neq 13$. If there exists a prime $\ell \neq 13$ such that $\ell \mid F$ and the residue degree of *K* over ℓ is equal to 2, then the elliptic curve *E* does not have $B_{K,13}$ -reduction. Hence

90

91

we conclude that an elliptic curve $E_t^{(13)}$, $t \in \mathbb{Z}$ does not have $B_{K,13}$ -reduction with very high probability.

4. Mod p Galois representations

In this section, we consider the irreducibility and surjectivity of $\overline{\rho}_{E,p}$ for semistable elliptic curves E over a number field K with $\mathfrak{q} \in B_{K,p}$ -reduction.

4.1. Classification of \mathcal{O}_K -group schemes of order p

Let K be a number field. Fix a prime number p. We shall review the classification of \mathcal{O}_K -group schemes of order p due to Oort and Tate [9]. Let M be the set of non-generic points of $\text{Spec}(\mathcal{O}_K)$, and let M_p denote the set of $\mathfrak{p} \in M$ such that \mathfrak{p} divides p. Let F denote the functor which associates with each commutative ring R with unity the set F(R) of isomorphism classes of R-group schemes of order p. Then Oort and Tate showed that the square

$$\begin{array}{rccc} F(\mathcal{O}_K) & \to & \prod_{\mathfrak{p} \in M} F(\mathcal{O}_{\mathfrak{p}}) \\ \downarrow & & \downarrow \\ F(K) & \to & \prod_{\mathfrak{p} \in M} F(K_{\mathfrak{p}}) \end{array}$$

is Cartesian (see [9, Lemma 4]). Let C_K denote the idèle class group of K. Using class field theory, there are canonical bijections

$$F(K) \simeq \operatorname{Hom}_{\operatorname{cont}}(C_K, \mathbb{F}_p^{\times}),$$

$$F(K_{\mathfrak{p}}) \simeq \operatorname{Hom}_{\operatorname{cont}}(K_{\mathfrak{p}}^{\times}, \mathbb{F}_p^{\times}) (\mathfrak{p} \in M), \text{ and}$$

$$F(\mathcal{O}_{\mathfrak{p}}) \simeq \operatorname{Hom}_{\operatorname{cont}}(K_{\mathfrak{p}}^{\times}/U_{\mathfrak{p}}, \mathbb{F}_p^{\times}) (\mathfrak{p} \in M \setminus M_p),$$

where Hom_{cont} denotes the set of the continuous homomorphisms and $U_{\mathfrak{p}}$ is the group of units in $\mathcal{O}_{\mathfrak{p}}$ (see [9, Lemma 6]). Via these bijections, the arrows in the above diagram are induced by the canonical homomorphisms $K_{\mathfrak{p}}^{\times} \to C_K$ and $K_{\mathfrak{p}}^{\times} \to K_{\mathfrak{p}}^{\times}/U_{\mathfrak{p}}$.

For an \mathcal{O}_K -group scheme G of order p, we denote by $\psi^G \in \operatorname{Hom}_{\operatorname{cont}}(C_K, \mathbb{F}_p^{\times})$ the idèle character determined by $G \otimes K$, and by ψ_p^G the corresponding character of K_p^{\times} for $\mathfrak{p} \in M$. For each $\mathfrak{p} \in M_p$, we let $n_{\mathfrak{p}}^G = v_{\mathfrak{p}}(a)$, where $v_{\mathfrak{p}}$ is the normalized discrete valuation of $K_{\mathfrak{p}}$ and a is the element of $\mathcal{O}_{\mathfrak{p}}$ such that $G \otimes \mathcal{O}_{\mathfrak{p}} \simeq G_{a,b}$ in the notation of [9]. Note that $n_{\mathfrak{p}}^G$ is uniquely determined by G. Oort and Tate showed the following [9, Theorem 3]:

Theorem 4.1 (Oort-Tate). The map $G \mapsto (\psi^G, (n_{\mathfrak{p}}^G)_{\mathfrak{p}\in M_p})$ gives a bijection between the isomorphism classes of \mathcal{O}_K -group schemes of order p and the systems $(\psi, (n_{\mathfrak{p}})_{\mathfrak{p}\in M_p})$ consisting of a continuous homomorphism $\psi : C_K \to \mathbb{F}_p^{\times}$ and for each $\mathfrak{p} \in M_p$ an integer $n_{\mathfrak{p}}$ with $0 \leq n_{\mathfrak{p}} \leq e_{\mathfrak{p}}$, which satisfy the following conditions:

- (A) For $\mathfrak{p} \in M \setminus M_p$, ψ is unramified at \mathfrak{p} , i.e., $\psi_{\mathfrak{p}}(U_{\mathfrak{p}}) = 1$,
- (B) For $\mathfrak{p} \in M_p$, $\psi_{\mathfrak{p}}(u) = (\operatorname{Nm}_{k_{\mathfrak{p}}/\mathbb{F}_p}(\overline{u}))^{-n_{\mathfrak{p}}}$, $\forall u \in U_{\mathfrak{p}}$, where $u \mapsto \overline{u}$ denotes the residue class map.

Here $\psi_{\mathfrak{p}}: K_{\mathfrak{p}}^{\times} \to \mathbb{F}_{p}^{\times}$ denotes the local character induced by ψ via the canonical map $K_{\mathfrak{p}}^{\times} \to C_{K}$.

For a given family $(n_{\mathfrak{p}})_{\mathfrak{p}\in M_p}$, there is no idèle class character ψ satisfying the conditions (A) and (B) of Theorem 4.1, or the set of all idèle characters is a principal homogeneous space under the group of homomorphisms of the narrow class group of K into \mathbb{F}_p^{\times} . Therefore, if the narrow class number h_K^+ of K is prime to (p-1), there is at most one ψ for a given family $(n_{\mathfrak{p}})_{\mathfrak{p}\in M_p}$. Furthermore, for an \mathcal{O}_K -group scheme G of order p corresponding to $(n_{\mathfrak{p}})_{\mathfrak{p}\in M_p}$, the Cartier dual of G corresponds to $(e_{\mathfrak{p}} - n_{\mathfrak{p}})_{\mathfrak{p}\in M_p}$.

4.2. Irreducibility and surjectivity of $\overline{\rho}_{E,p}$

Let p be a prime number. Let E be an elliptic curve over a number field K. If the representation $\overline{\rho}_{E,p}$ is reducible, then we have

(9)
$$\overline{\rho}_{E,p} \sim \begin{pmatrix} \phi_1 & * \\ 0 & \phi_2 \end{pmatrix}, \ \phi_i : G_K \to \mathbb{F}_p^{\times}, \ i = 1, 2.$$

We note that each character ϕ_i induces $\overline{\phi}_i : \operatorname{Gal}(K^{\mathrm{ab}}/K) \to \mathbb{F}_p^{\times}$, where K^{ab} is the maximal abelian extension field of K.

Proposition 4.2. Assume that E is a semistable elliptic curve with good reduction at the primes of K over p. Then each character ϕ_i gives an \mathcal{O}_K -group scheme G of order p with $\psi^G = \overline{\phi}_i \circ \sigma_K$, where $\sigma_K : C_K \to \operatorname{Gal}(K^{\mathrm{ab}}/K)$ is the reciprocity map.

Proof. Since E has good reduction at the primes \mathfrak{p} of K over p, the p-torsion subgroup E[p] is an $\mathcal{O}_{\mathfrak{p}}$ -group scheme. Therefore it follows that ϕ_i has a structure of an $\mathcal{O}_{\mathfrak{p}}$ -group scheme of order p. Let S_E denote the set of the primes of K at which E has bad reduction. Let \mathfrak{q} be a prime of K with $\mathfrak{q} \nmid p$.

- In the case $q \notin S_E$, the representation $\overline{\rho}_{E,p}$ is unramified at q by the criterion of Néron-Ogg-Shafarevich (see [12, Chapter VII, Theorem 7.1]). Hence ϕ_i is unramified at q.
- In the case $\mathbf{q} \in S_E$, there exists an unramified extension field L over $K_{\mathbf{q}}$ of degree 1 or 2 such that E is isomorphic to the Tate curve E_q over L, where q is the Tate parameter (see [11, §1.12]). By the theory of Tate curves, we have $E(L) \simeq \overline{L}^{\times}/q^{\mathbb{Z}}$. With this identification, we clearly have $E[p] \simeq (\zeta_p \cdot Q^{\mathbb{Z}})/q^{\mathbb{Z}}$, where $Q = q^{1/p} \in \overline{L}$ is a fixed p-th root of q. Therefore the representation $\overline{\rho}_{E,p}$ restricted to $\operatorname{Gal}(\overline{L}/L)$ has the form $\begin{pmatrix} 1 & * \\ 0 & \chi \end{pmatrix}$, where χ is the cyclotomic character. Hence it follows that ϕ_i is unramified at \mathbf{q} .

The above argument shows that ϕ_i is unramified at the primes \mathfrak{q} of K with $\mathfrak{q} \nmid p$. Therefore we can see that the character $\overline{\phi}_i \circ \sigma_K$ satisfies the conditions (A) and (B) of Theorem 4.1. This completes the proof.

Let K be a cubic field. We next consider the structure of \mathcal{O}_K -group schemes of order p. Our result is as follows:

Proposition 4.3. Let p be an odd prime number. Let K be a cubic field with $gcd(p-1,h_K^+) = 1$. If p satisfies either the condition (A) or (B) of Theorem 1.2, then the only \mathcal{O}_K -group schemes of order p are $\mathbb{Z}/p\mathbb{Z}$ and μ_p , where $\mathbb{Z}/p\mathbb{Z}$ (resp. μ_p) is a constant (resp. diagonalizable) group scheme.

Proof. In the case where p is prime in \mathcal{O}_K , this is prove by Oort-Tate [9]. We next consider the case where p is not prime in \mathcal{O}_K . For simplicity, we only consider the case where K is a complex number field. Assume $p \nmid \operatorname{Nm}_{K/\mathbb{Q}}(u-1)$, where u is a fundamental unit of K such that u > 0 with respect to the only one real place of K.

The basic idea is based on [4]. We first consider the case $p\mathcal{O}_K = \mathfrak{p}_1^2\mathfrak{p}_2$, where $\mathfrak{p}_1, \mathfrak{p}_2$ are the primes of K over p. For the family $(n_{\mathfrak{p}_1}, n_{\mathfrak{p}_2}) = (1, 0)$, we assume that there is an idèle class character $\psi : C_K \to \mathbb{F}_p^{\times}$ satisfying the conditions (A) and (B) of Theorem 4.1. According to class field theory, there is a modulus of the form $\mathfrak{m} = \infty \cdot \mathfrak{p}_1$ such that ψ induces a surjective homomorphism $\overline{\psi} : C_m \to \mathbb{F}_p^{\times}$, where $C_{\mathfrak{m}}$ is the ray class group of K modulus \mathfrak{m} . Let C_{∞} be the narrow class group of K. There is an exact sequence [8]

$$1 \to U^+/U_{\mathfrak{m},1} \to (\mathcal{O}_K/\mathfrak{p}_1)^{\times} \to C_{\mathfrak{m}} \to C_{\infty} \to 1,$$

where U^+ is the group of totally positive units of K and $U_{\mathfrak{m},1}$ is the subgroup of the elements of U^+ which are congruent to 1 modulo \mathfrak{p}_1 . Since $\gcd(p-1, h_K^+) = 1$, we see that a composition of the following maps

$$\Phi: (\mathcal{O}_K/\mathfrak{p}_1)^{\times} \to C_\mathfrak{m} \xrightarrow{\overline{\psi}} \mathbb{F}_p^{\times}$$

is an isomorphism. Since $u \in U^+$ and the image of U^+ is in the kernel of the isomorphism Φ , we have $u - 1 \in \mathfrak{p}_1$. This is a contradiction to the condition $p \notin$ $\operatorname{Nm}_{K/\mathbb{Q}}(u-1)$. Therefore there is no idèle character ψ satisfying the conditions (A) and (B) of Theorem 4.1 for the family $(n_{\mathfrak{p}_1}, n_{\mathfrak{p}_2}) = (1, 0)$. Furthermore, considering the Cartier dual, the same result holds for the family $(n_{\mathfrak{p}_1}, n_{\mathfrak{p}_2}) =$ (1, 1). A similar argument shows that there is no idèle class character for families $(n_{\mathfrak{p}_1}, n_{\mathfrak{p}_2}) = (0, 1), (2, 0)$. Therefore the only \mathcal{O}_K -group schemes of order p are $\mathbb{Z}/p\mathbb{Z}$ and μ_p by Theorem 4.1.

In the case where $p\mathcal{O}_K = \mathfrak{p}^3$, $\mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$ or $\mathfrak{p}_1\mathfrak{p}_2$, a similar argument as above shows the same result. This completes the proof.

We note that Theorem 1.1 holds for the primes $p \ge 3$ when E is restricted to be semistable. Combining Propositions 4.2 and 4.3 with Theorem 1.1, we can prove Theorem 1.2 as follows:

Proof of Theorem 1.2. The idea is based on the proof of [7, Theorem 4] or [4, Théorème]. Suppose that $\overline{\rho}_{E,p}$ is reducible. Then $\overline{\rho}_{E,p}$ has the form (9). Since $\phi_1 \cdot \phi_2 = \chi$, it follows from Propositions 4.2 and 4.3 that either of ϕ_i is a trivial character. Hence we see that E or $E' = E/\mu_p$ has a *p*-torsion point. Since E

and E' have bad reduction at same primes, this is a contradiction to Theorem 1.1. This completes the proof of Theorem 1.2.

Example. Let K be a cubic field with $h_K^+ = 1$. Let E be an elliptic curve over K with everywhere good reduction. By Theorem 1.2, we obtain the following results on the irreducibility of $\overline{\rho}_{E,p}$:

- Let $K = \mathbb{Q}[x]/(f(x))$ be a complex cubic field defined by $f(x) = x^3 + x 1$. We have that the element $x \in \mathcal{O}_K$ is a fundamental unit of K with x > 0 and $\operatorname{Nm}_{K/\mathbb{Q}}(x-1) = 1$. We also have $3\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2$ with $f_1 = 1$ and $f_2 = 2$, where f_i is the residue degree of \mathfrak{p}_i . Since $\sharp E(k_{\mathfrak{p}_1}) \leq 3 + 1 + 2\sqrt{3} < 8$, the elliptic curve E has no p-torsion points for the primes $p \geq 11$. By a similar argument of the proof of Theorem 1.2, we see that $\overline{\rho}_{E,p}$ is irreducible for the primes $p \geq 11$. Furthermore, since $h_{K(\zeta_p)} = 1$ for p = 3, 5 and 7, it follows from Theorem 1.2 that $\overline{\rho}_{E,p}$ is irreducible for p = 3, 5 and 7. Therefore we have that $\overline{\rho}_{E,p}$ is irreducible for the primes $p \geq 3$.
- Let $K = \mathbb{Q}[x]/(f(x))$ be a totally real cubic field defined by $f(x) = x^3 x^2 3x 1$. We have that elements $x, x^2 2x \in \mathcal{O}_K$ are two independent fundamental units of K with $\operatorname{Nm}_{K/\mathbb{Q}}(x^2 1) = 4$ and $\operatorname{Nm}_{K/\mathbb{Q}}((x^2 2x)^2 1) = 16$. We also have $2\mathcal{O}_K = \mathfrak{p}^3$. Since $\sharp E(k_{\mathfrak{p}}) \leq 2 + 1 + 2\sqrt{2} < 7$, the elliptic curve E has no p-torsion points for the primes $p \geq 7$. By a similar argument of the proof of Theorem 1.2, we see that $\overline{\rho}_{E,p}$ is irreducible for the primes $p \geq 7$. Furthermore, since $h_{K(\zeta_3)} = 1$ and $h_{K(\zeta_5)} = 2$, it follows from Theorem 1.2 that $\overline{\rho}_{E,p}$ is irreducible for the primes $p \geq 3$.

We give the following result mainly due to Serre [11]:

Proposition 4.4. Let K be a number field with $h_K^+ = 1$ and let D_K denote the discriminant of K. Let E be a semistable elliptic curve over K with the *j*-invariant j_E . Let p be a prime such that $p \nmid D_K$. If p = 2,3 or 5, suppose $p \nmid v(j_E)$ for some $v \in S_E$, where S_E is the set of the finite places v at which E has bad reduction. If $\overline{\rho}_{E,p}$ is irreducible, then $\overline{\rho}_{E,p}$ is surjective.

Proof. See the proof of [11, Proposition 21] or $[4, \S3]$.

Combining the above result with Theorem 1.2, we obtain the following result on the surjectivity of $\overline{\rho}_{E,p}$.

Theorem 4.5. Let K be a cubic field with $h_K^+ = 1$ and let D_K denote the discriminant of K. Let p be an odd prime number such that $p \nmid D_K$. Suppose that $p \nmid h_{K(\zeta_p)}$ and $e_{\mathfrak{p}} < p-1$ for the primes \mathfrak{p} of K over p. Let E be a semistable elliptic curve over K with $B_{K,p}$ -reduction. If p = 3 or 5, suppose $p \nmid v(j_E)$ for some $v \in S_E$. If p satisfies either the condition (A) or (B) of Theorem 1.2, then $\overline{\rho}_{E,p}$ is surjective.

95

Remark. In the case where $K = \mathbb{Q}$ or K is a quadratic field, we can show similar results of Theorems 1.2 and 4.5 (see also [4] in the case where K is a quadratic field). However, in general, it does not hold in the case $[K : \mathbb{Q}] \geq 4$.

4.3. $K(\zeta_p)$ -rational points of order p

Let K be a number field. Let E be an elliptic curve over K with a p-torsion point. There exist an elliptic curve E^* over K and a K-isogeny $E \to E^*$ with kernel $\mathbb{Z}/p\mathbb{Z}$. By the exact sequence (1), we have $\mu_p \subset E^*$ and hence E^* has a $K(\zeta_p)$ -rational point of order p. For an elliptic curve E over K with $B_{K,p}$ reduction, we here consider the existence of a $K(\zeta_p)$ -rational point of E of order p. By Theorem 1.2, we obtain the following result (cf. Theorem 1.1):

Proposition 4.6. Let p be an odd prime number. Let K be a cubic field with $gcd(p-1, h_K^+) = 1$. Suppose that $p \nmid K(\zeta_p)$ and $e_p < p-1$ for the primes p of K over p. Let E be a semistable elliptic curve over K with $B_{K,p}$ -reduction. If p satisfies either (A) or (B) of Theorem 1.2, then E has no $K(\zeta_p)$ -rational points of order p.

Proof. Suppose that *E* has a *K*(ζ_p)-rational point of order *p*. Set *L* = *K*(*E*[*p*]) and *M* = *K*(ζ_p). Let *G* be a simple subgroup of *E*[*p*] as a Gal(*L*/*K*)-module. Set *S*_{*p*} = Gal(*L*/*M*). We may assume that *S*_{*p*} is non-trivial. Then the order of *S*_{*p*} is equal to *p*. Since *S*_{*p*}⊲Gal(*L*/*K*), we see that the set $G(\overline{K})^{S_p}$ of the *S*_{*p*}-fixed points is a Gal(*L*/*K*)-submodule of $G(\overline{K})$. Since $\#G(\overline{K}) \equiv \#G(\overline{K})^{S_p} \mod p$, the group $G(\overline{K})^{S_p}$ is non-trivial, and hence $G(\overline{K}) = G(\overline{K})^{S_p}$ because *G* is simple. Then *G*(\overline{K}) is a Gal(*M*/*K*)-module. Since the group Gal(*M*/*K*) has exponent dividing *p* − 1, the $\mathbb{F}_p[\text{Gal}(M/K)]$ -module $G(\overline{K})$ is a product of 1-dimensional eigenspaces. Since *G* is simple, there is only one such eigenspace, and hence *G* has order *p*. Therefore the representation $\overline{\rho}_{E,p}$ is reducible. But this contradicts to Theorem 1.2. This completes the proof of Proposition 4.6.

References

- D. Jeon, C. H. Kim, and Y. Lee, Families of elliptic curves over quartic number fields with prescribed torsion subgroups, Math. Comp. 80 (2011), no. 276, 2395–2410.
- S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221–229.
- [3] M. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125–149.
- [4] A. Kraus, Courbes elliptiques semi-stables et corps quadratiques, J. Number Theory 60 (1996), no. 2, 245–253.
- [5] D. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc.
 (3) 33 (1976), no. 2, 193–237.
- [6] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186.
- [7] _____, Rational isogenies of prime degree, Invent. Math. 44 (1978), no. 2, 129–162.
- [8] J. Neukirch, Algebraic Number Theory, Grudlehren der Mathematischen Wisenshaften, vol. 322, Springer-Verlag, Berlin-Heidelberg New York, 1999.

- [9] Oort and Tate, Group schemes of prime order, Ann. Sci. École Norm. Sup. 3 (1970), 1–21.
- [10] The PARI Group, Bordeaux, PARI/GP, available from http://pari.math.u-bordeaux. fr/doc.html.
- [11] J.-P. Serre, Propriétés galoisiennes des points d'ortre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331.
- [12] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer-Verlag, Berlin-Heidelberg New York, 1994.
- [13] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer-Verlag, Berlin-Heidelberg New York, 1982.
- [14] M. Yasuda, Torsion points of elliptic curves with bad reduction at some primes, to appear in Commentarii Math. Univ. St. Pauli.

Fujitsu Laboratories Ltd. 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, Japan *E-mail address:* myasuda@labs.fujitsu.com

96