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TORSION POINTS OF ELLIPTIC CURVES WITH BAD

REDUCTION AT SOME PRIMES II

Masaya Yasuda

Abstract. Let K be a number field and fix a prime number p. For any
set S of primes of K, we here say that an elliptic curve E over K has
S-reduction if E has bad reduction only at the primes of S. There exists
the set BK,p of primes of K satisfying that any elliptic curve over K with
BK,p-reduction has no p-torsion points under certain conditions. The
first aim of this paper is to construct elliptic curves over K with BK,p-
reduction and a p-torsion point. The action of the absolute Galois group
on the p-torsion subgroup of E gives its associated Galois representation

ρE,p modulo p. We also study the irreducibility and surjectivity of ρE,p

for semistable elliptic curves with BK,p-reduction.

1. Introduction

Let E be an elliptic curve over a number field K. For a prime number p,
the p-torsion points of E are the points of finite order p in the Mordell-Weil
group E(K). In [14], we studied the existence of a p-torsion points of E which
has bad reduction only at some primes, and showed the following [14, Theorem
1.2]. Let ζp denote a fixed primitive p-th root of unity.

Theorem 1.1. Let K be a number field. Let p ≥ 5 be a prime number such

that the ramification index ep satisfies ep < p − 1 for the primes p of K over

p. Set

BK,p = {q : prime of K over a prime ℓ | ℓ 6= p and ℓf 6≡ ±1 mod p},
where f is the residue degree of q. Let E be an elliptic curve over K with

BK,p-reduction. If p does not divide the class number hK(ζp) of K(ζp), then E
has no p-torsion points.

Fix a prime number p ≥ 5 with ep < p− 1 for the primes p of K over p. It
follows by Theorem 1.1 that hK(ζp) is divisible by p if there exists E over K
with BK,p-reduction and a p-torsion point. The motivation of this paper arises
from the question whether we can construct such pairs (E,K). We here focus
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on the case where K is a quadratic field. Kamienny [2] and Kenku-Momose [3]
classified the possible torsion subgroups of elliptic curves over quadratic fields
K, and showed that any elliptic curve over K cannot have p-torsion points for
the primes p ≥ 17. Hence it is sufficient to consider the cases p = 5, 7, 11 and
13. In the cases p = 5 and 7, we construct such pairs (E,K) using Kubert’s
parametrization [5, Table 3] for an infinite family of elliptic curves with a p-
torsion point. Furthermore, we list such pairs (E,K) and their hK(ζp). For the
cases p = 11 and 13, Jeon, Kim and Lee [1] gave an infinite family of elliptic
curves E over quadratic fields K with a p-torsion point. On the contrary to
the cases p = 5 and 7, we show that an elliptic curve from the family given by
Jeon, Kim and Lee cannot have BK,p-reduction with very high probability.

Let GK denote the absolute Galois group Gal(K/K). The action of GK on
the p-torsion subgroup E[p] gives its associated Galois representation

ρE,p : GK → Aut(E[p]) ≃ GL2(Fp)

modulo p. We also study the irreducibility and surjectivity of ρE,p for semistable
elliptic curves E with BK,p-reduction. Using a part of Serre’s results [11],
Mazur [7] studied the surjectivity of ρE,p for semistable elliptic curves E over
Q. Furthermore, Kraus [4] extended Mazur’s work to the case where K is a
quadratic field. We then focus on the case where K is a cubic field. We mainly
consider the irreducibility of ρE,p. If ρE,p is reducible, then we have

ρE,p ∼
(

φ1 ∗
0 φ2

)

,

where φi : GK → F×
p is a character for i = 1, 2. For semistable elliptic curves

E with good reduction at the primes of K over p, we show that each φi has a
structure of an OK-group scheme of order p, where OK is the ring of integers of
K. Our main idea is to classify the structure of OK-group schemes of order p
for cubic fields K and show that either of φi is a trivial character under certain
conditions. We obtain the following result on the irreducibility of ρE,p.

Theorem 1.2. Let p be an odd prime number. Let K be a cubic field with

gcd(p − 1, h+K) = 1, where h+K is the narrow class number of K. Suppose that

p ∤ hK(ζp) and ep < p− 1 for the primes p of K over p. Let E be a semistable

elliptic curve over K with BK,p-reduction. If p satisfies either of the following

conditions, then ρE,p is irreducible.

(A) p is prime in OK .

(B) In the case where K is a totally real cubic field, we have p ∤ NmK/Q(u
2−

1) or NmK/Q(v
2−1), where u, v are two independent fundamental units

of K and NmK/Q denotes the norm map. In the case where K is a

complex cubic field, we have p ∤ NmK/Q(u−1), where u is a fundamental

unit of K such that u > 0 with respect to the only one real place of K.

Notation. The symbols Z, and Q denote, respectively, the ring of integers,
and the field of rational numbers. For a prime p, the finite field with p elements
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is denoted by Fp. We denote the p-adic integers and the p-adic number field
by Zp and Qp. Let OK denote the ring of integers of a number field K. For
a prime p of K, let Op denote the completion of OK at p, kp its residue field,
and Kp the field of fractions of Op.

2. Preliminaries

In this section, we consider the property of elliptic curves with BK,p-reduc-
tion and a p-torsion point. We also review families of elliptic curves with a
p-torsion point.

2.1. Elliptic curves with BK,p-reduction and a p-torsion point

Let K be a number field. Fix a prime number p ≥ 5 with ep < p − 1 for
the primes p of K over p. If there exists an elliptic curve with BK,p-reduction
and a p-torsion point, it follows by Theorem 1.1 that p | hK(ζp) and hence
AK(ζp) 6= 0, where AF denotes the p-part of the ideal class group of a number
field F . Furthermore, we can see the following property.

Let E be an elliptic curve over K with BK,p-reduction and a p-torsion point
P . Using the Weil-pairing ep : E[p]×E[p] → µp, we define a map ψ : E[p] → µp
by Q 7→ ep(P,Q), where µp denotes the set of the p-th root of unity. Since the
point P is rational over K, this map gives an exact sequence

(1) 0 −→ Z/pZ −→ E[p]
ψ−→ µp −→ 0

of GK-modules, where Z/pZ denotes the constant GK -module generated by P .
Let L = K(E[p]) denote the field generated by the points of E[p]. By [14, Poof
of Theorem 1.2], we may assume that L is an unramified extension of K(ζp) of
degree p. The representation ρE,p induces the representation

ρ : Gal(L/K) → GL2(Fp).

We note that ρ is faithful and of the form ( 1 ∗
0 ω ) by the exact sequence (1) where

ω : ∆ → F×
p , ∆ = Gal(K(ζp)/K)

denotes the cyclotomic character defined by σ(ζp) = ζ
ω(σ)
p for every σ ∈ ∆.

We see that ρ does not split by the assumption L 6= K(ζp), and hence the
group Gal(L/K(ζp)) is isomorphic to the subgroup of GL2(Fp) consisting of all
matrices of the form ( 1 k0 1 ) under the representation ρ. We now consider the
action of ∆ on Gal(L/K(ζp)) by conjugation in Gal(L/K). Consider ∆ as a
subgroup of F×

p under the cyclotomic character ω and fix a ∈ ∆ ⊂ F×
p . Since

conjugating ( 1 k
0 1 ) by a ∈ F×

p gives
(

1 k/a
0 1

)

, we see that a ∈ ∆ ⊂ F×
p acts on

Gal(L/K(ζp)) as multiplication by a−1. Then we have Aω
−1

K(ζp)
6= 0, where Rω

i

denotes the ωi-eigenspace of a Zp[∆]-module R as in the notation of [13, §6.3].
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2.2. Families of elliptic curves with a p-torsion point

2.2.1. The cases p = 5 and 7. Let E be an elliptic curve over a number
field K with a p-torsion point P . The following result is well-known ([5, 12] for
details): For p = 5, there exists a unique t ∈ K \ {0} such that E is isomorphic
to an elliptic curve defined by the equation

E
(5)
t : y2 + (1− t)xy − ty = x3 − tx2

and the 5-torsion point P corresponds to (0, 0) under the isomorphism. The

discriminant of E
(5)
t is

(2) ∆(E
(5)
t ) = t5(t2 − 11t− 1).

Similarly, for p = 7, there exists a unique t ∈ K\{0, 1} such that E is isomorphic
to an elliptic curve defined by the equation

E
(7)
t : y2 + (1 + t− t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2

and the 7-torsion point P corresponds to (0, 0) under the isomorphism. The

discriminant of E
(7)
t is

(3) ∆(E
(7)
t ) = t7(t− 1)7(t3 − 8t2 + 5t+ 1).

2.2.2. The cases p = 11 and 13. For p = 11 and 13, Jeon, Kim and

Lee gave an infinite family of elliptic curves E
(p)
t , t ∈ Q over quadratic fields

Q(
√

dp) having a p-torsion point as follows (see [1, Section 3] for details): For
p = 11, set







b11 = − 1
4 t(t− 1)(t2 + 1−

√
d11)(t

3 + t− 2− t
√
d11),

c11 = 1
2 t(t− 1)(t2 + 1−

√
d11),

d11 = t4 + 2t2 − 4t+ 1.

On the other hand, for p = 13, set










b13 = − t(t4−t2+t+1−(t−1)
√
d13)(t

3+t2+1−
√
d13)(t

4+t3+t+2−t
√
d13)

4(t3+t2−1−
√
d13)

,

c13 = − t(t3+t2+1−
√
d13)(t

4−t2+t+1−(t−1)
√
d13)

2(t3+t2−1−
√
d13)

,

d13 = t6 + 2t5 + t4 + 2t3 + 6t2 + 4t+ 1.

Let p = 11 or 13. Let E
(p)
t be an elliptic curve over a quadratic field Q(

√

dp)
defined by the equation

E
(p)
t : y2 + (1 − cp)xy − bpy = x3 − bpx

2

with t ∈ Q. Then E
(p)
t has a p-torsion point (0, 0).

3. A construction of elliptic curves with BK,p-reduction and a
p-torsion point (quadratic field case)

Throughout this section, let K be a quadratic field.
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3.1. The cases p = 5 and 7

In this subsection, we construct pairs (E,K), where E is an elliptic curve
over K with BK,p-reduction and a p-torsion point. To construct such pairs, we
give the following result:

Proposition 3.1. Let p = 5 or 7. Let E = E
(p)
t , t ∈ OK be an elliptic curve

over defined as in §2.2.1. Suppose that E has BK,p-reduction. Then we have
{

t2 − 11t− 1 ∈ O×
K if p = 5,

t3 − 8t2 + 5t+ 1 ∈ O×
K if p = 7.

Proof. For simplicity, we only consider the case p = 7. Assume t3−8t2+5t+1 6∈
O×
K . Then there exists a prime ℓ dividing t3−8t2+5t+1 ∈ OK . By the equation

(3), the elliptic curve E has bad reduction at some prime q of K over ℓ. Since
E has BK,p-reduction, we may assume ℓ 6= 7. We note that the solutions of
the equation

X3 − 8X2 + 5X + 1 = 0

define the extension field K(ζ7 + ζ−1
7 ) over K. Now we consider the following

diagram:

Gal(K(ζ7)/K)
ω→֒ (Z/7Z)×

σ ↓ ↓
Gal(K(ζ7 + ζ−1

7 )/K) →֒ (Z/7Z)×/{±1},
where ω is the cyclotomic character defined as in §2.1 and σ is the restriction
map. Let s ∈ Gal(K(ζ7)/K) denote the Frobenius map satisfying

Gal(Kq(ζ7)/Kq) = 〈s〉.
Note that we have ω(s) = ℓf ∈ (Z/7Z)×, where f denotes the residue degree
of q. Then we can see the following:

X3 − 8X2 + 5X + 1 = 0 mod q has a solution t ∈ OK ,

=⇒ X3 − 8X2 + 5X + 1 = 0 has a solution t′ ∈ Oq (by Hensel’s lemma),

=⇒ σ(s) = 1 ∈ Gal(K(ζ7 + ζ−1
7 )/K) ⇐⇒ ℓf ≡ ±1 mod 7.

This is a contradiction to the fact that E has BK,p-reduction. This completes
the proof of Proposition 3.1. �

We can apply Proposition 3.1 to construct pairs (E,K) as follows: Let
K = Q(

√
m) be a quadratic field, where m is a square-free integer. Set t =

a+ b
√
m ∈ OK with 2a, 2b ∈ Z. Let 0 6= u = a2 −mb2 ∈ Z denote the norm of

t ∈ OK .

3.1.1. The case p = 5. By Proposition 3.1, consider the condition

(4) t2 − 11t− 1 ∈ O×
K ⇐⇒ NmK/Q(t

2 − 11t− 1) = ±1.

Since we have

NmK/Q(t
2 − 11t− 1) = −4a2 − 22(u− 1)a+ u2 + 123u+ 1,
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we see that the condition (4) is equivalent to the condition

(5) X2 + 11(u− 1)X − u2 − 123u− 1 = ±1

with X = 2a ∈ Z. Note that the equation (5) can be transformed to the Pell
equation

(6) A2 − 5B2 = ±4

with A = 2X + 11(u − 1) ∈ Z and B = 5(u + 1) ∈ Z. Let ǫ = 1+
√
5

2 be

a fundamental unit of Q(
√
5). It is well known that the integer solutions of

the Pell equation (6) are given by the elements ±ǫn for n = 0, 1, 2, . . .. Since
B ∈ 5Z, we note that the solutions of the equation (5) corresponds to the
elements ±ǫ5n for n = 0, 1, 2, . . .. For example, we have that an integer solution
(A,B) = (−11,−5) of the Pell equation (6) corresponds the element −ǫ5 =

− 11+5
√
5

2 . Therefore we see that a pair (X,u) = (11,−2) satisfies the condition
(5).

A computation shows that only the pairs

(X,u) = (10,−1), (12,−1), (11,−2), (22,−2), (12, 10), (−111, 10), (10,−12),

(133,−12), (22, 121), (−1342, 121), (0,−123), (1364,−123)

satisfy the condition (5) with |u| < 1000. For each pair (X,u), we compute a

solution (a, b,m) and check whether the elliptic curve E
(5)
t , t = a+ b

√
m over

K = Q(
√
m) has BK,5-reduction as follows:

• For (X,u) = (10,−1), we have a solution (a, b,m) = (5, 1, 26). We see

that the elliptic curve E
(5)
t , t = a+b

√
m has good reduction everywhere

over K = Q(
√
26). Therefore E

(5)
t has BK,5-reduction.

• For (X,u) = (11,−2), we have a solution (a, b,m) =
(

11
2 ,

1
2 , 129

)

. We

see that the elliptic curve E
(5)
t , t = a+ b

√
m has bad reduction only at

the primes of K = Q(
√
129) over 2. Therefore E

(5)
t has BK,5-reduction.

• For (X,u) = (12, 10), we have a solution (a, b,m) = (6, 1, 26). Since

the elliptic curve E
(5)
t , t = a + b

√
m has bad reduction at the primes

of K = Q(
√
26) over 5, the elliptic curve E

(5)
t does not have BK,5-

reduction.

In Table 1, we list the triples (a, b,m) such that the elliptic curve E
(5)
t , t =

a+b
√
m overK = Q(

√
m) has BK,5-reduction. Furthermore, for each (a, b,m),

we also list hK(ζ5) which is computed by using PARI/GP Version 2.4.1 [10].
We note that hK(ζ5) is divisible by 5.

3.1.2. The case p = 7. As in the case p = 5, consider the condition

(7) t3 − 8t2 + 5t+ 1 ∈ O×
K ⇐⇒ NmK/Q(t

3 − 8t2 + 5t+ 1) = ±1
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Table 1. List of the triples (a, b,m) with |u| < 1000 such

that E
(5)
t , t = a+ b

√
m over K = Q(

√
m) has BK,5-reduction

(u = a2 −mb2)

(X,u) (a, b,m) hK(ζ5)

(10,−1) (5, 1, 26) 40
(12,−1) (6, 1, 37) 5
(11,−2) (112 ,

1
2 , 129) 10

(22,−2) (11, 1, 123) 160
(10,−12) (5, 1, 37) 5
(133,−12) (1332 , 12 , 17737) 307125

(−1342, 121) (−671, 1, 450120) 320
(0,−123) (0, 1, 123) 160

(1364,−123) (682, 1, 465247) 461194240

Table 2. List of the triples (a, b,m) with |u| < 1000 such

that E
(7)
t , t = a+ b

√
m over K = Q(

√
m) has BK,7-reduction

(u = a2 −mb2)

(X,u) (a, b,m) hK(ζ7)

(6,−1) (3, 1, 10) 28
(7,−2) (72 ,

1
2 , 57) 56

(8, 5) (4, 1, 11) 28

by Proposition 3.1. A computation shows that NmK/Q(t
3 − 8t2 + 5t + 1) is

equal to

8a3 + (20u− 32)a2 + (−16u2 − 86u+ 10)a+ (u3 + 54u2 + 4u+ 1).

Therefore the condition (7) is equivalent to the condition

(8) X2 + (5u− 8)X2 + (−8u2 − 43u+ 5)X + (u3 + 54u2 + 4u+ 1) = ±1

with X = 2a ∈ Z. We see that only the pairs

(X,u) = (2, 1), (6,−1), (7,−1), (7,−2), (8, 5), (8, 6), (9, 7)

satisfy the condition (8) with |u| < 1000. As in the case p = 5, in Table 2,

we list the triples (a, b,m) such that the elliptic curve E
(7)
t , t = a+ b

√
m over

K = Q(
√
m) has BK,7-reduction. We note that hK(ζ7) is divisible by 7.

Remark. The equation (8) defines a nonsingular projective curve C of genus 1.
It follows from Siegel’s Theorem that the set C(Z) of the integer solutions is
finite. Therefore, unlike the case p = 5, there are only finitely many solutions
(X,u) ∈ Z2 of the equation (8).
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3.2. The cases p = 11 and 13

In this subsection, we consider whether we can construct pairs (E,K), where

E = E
(p)
t is an elliptic curve over K defined as in §2.2.2 such that E has BK,p-

reduction.

3.2.1. The case p = 11. Let E = E
(11)
t , t ∈ Z be an elliptic curve over

K = Q(
√
d11) defined as in §2.2.2. A computation shows that the discriminant

of E is equal to

∆(E) = − t
3 + t− 2− t

√
d11

2
· b311 · T,

where

T = − t3(t9 + 5t8 + 6t7 + 3t6 − 14t5 − 14t4 + t3 + 11t2 − 1)

+ t3(t7 + 5t6 + 5t5 − 9t3 − 6t2 + 2t+ 1)
√

d11 ∈ OK .

Furthermore, we have NmK/Q(T ) = −4t10 · (t5 − t4 − 15t3 + 14t2 + 3t − 1).

Let F = t5 − t4 − 15t3 + 14t2 + 3t− 1 ∈ Z. Since ∆(E) 6= 0, we see F 6= ±1.
Therefore there exists a prime ℓ with ℓ | F , and hence the elliptic curve E has
bad reduction at some prime q of K over ℓ. We note that the solutions of the
equation

X5 −X4 − 15X3 + 14X2 + 3X − 1 = 0

define the extension field Q(ζ11 + ζ−1
11 ) over Q. By a similar argument of the

proof of Proposition 3.1, we have ℓ ≡ ±1 mod 11 if ℓ 6= 11. Therefore we have
the following:

Proposition 3.2. Let E = E
(11)
t , t ∈ Z be an elliptic curve over K = Q(

√
d11)

defined as in §2.2.2. Then E does not have BK,11-reduction.

3.2.2. The case p = 13. Let E = E
(13)
t , t ∈ Z be an elliptic curve over

K = Q(
√
d13) defined as in §2.2.2. A computation shows that the discriminant

of E is equal to

∆(E) =
t4 + t3 + t+ 2− t

√
d13

2
· b313 · T,

where T ∈ OK satisfies NmK/Q(T ) = 4t6 · (t + 1)3 · (t3 + 4t2 + t − 1). Let

F = t3 + 4t2 + t − 1 ∈ Z. Since ∆(E) 6= 0, we see F 6= ±1. Therefore there
exists a prime ℓ with ℓ | F , and hence the elliptic curve E has bad reduction
at some prime q of K over ℓ. Let L be the splitting field of the equation

X3 + 4X2 +X − 1 = 0.

Then L is a subfield of Q(ζ13 + ζ−1
13 ) with [Q(ζ13 + ζ−1

13 ) : L] = 2. By a similar
argument of the proof of Proposition 3.1, we have ℓ2 ≡ ±1 mod 13 if ℓ 6= 13. If
there exists a prime ℓ 6= 13 such that ℓ | F and the residue degree of K over ℓ
is equal to 2, then the elliptic curve E does not have BK,13-reduction. Hence
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we conclude that an elliptic curve E
(13)
t , t ∈ Z does not have BK,13-reduction

with very high probability.

4. Mod p Galois representations

In this section, we consider the irreducibility and surjectivity of ρE,p for
semistable elliptic curves E over a number field K with q ∈ BK,p-reduction.

4.1. Classification of OK-group schemes of order p

Let K be a number field. Fix a prime number p. We shall review the
classification of OK-group schemes of order p due to Oort and Tate [9]. Let
M be the set of non-generic points of Spec(OK), and let Mp denote the set of
p ∈ M such that p divides p. Let F denote the functor which associates with
each commutative ring R with unity the set F (R) of isomorphism classes of
R-group schemes of order p. Then Oort and Tate showed that the square

F (OK) → ∏

p∈M F (Op)

↓ ↓
F (K) → ∏

p∈M F (Kp)

is Cartesian (see [9, Lemma 4]). Let CK denote the idèle class group of K.
Using class field theory, there are canonical bijections

F (K) ≃ Homcont(CK ,F
×
p ),

F (Kp) ≃ Homcont(K
×
p ,F

×
p ) (p ∈M), and

F (Op) ≃ Homcont(K
×
p /Up,F

×
p ) (p ∈M \Mp),

where Homcont denotes the set of the continuous homomorphisms and Up is
the group of units in Op (see [9, Lemma 6]). Via these bijections, the arrows
in the above diagram are induced by the canonical homomorphisms K×

p → CK
and K×

p → K×
p /Up.

For an OK-group scheme G of order p, we denote by ψG ∈ Homcont(CK ,F
×
p )

the idèle character determined byG⊗K, and by ψGp the corresponding character

of K×
p for p ∈ M . For each p ∈ Mp, we let nGp = vp(a), where vp is the

normalized discrete valuation of Kp and a is the element of Op such that
G⊗Op ≃ Ga,b in the notation of [9]. Note that nGp is uniquely determined by
G. Oort and Tate showed the following [9, Theorem 3]:

Theorem 4.1 (Oort-Tate). The map G 7→ (ψG, (nGp )p∈Mp
) gives a bijection

between the isomorphism classes of OK -group schemes of order p and the sys-

tems (ψ, (np)p∈Mp
) consisting of a continuous homomorphism ψ : CK → F×

p

and for each p ∈Mp an integer np with 0 ≤ np ≤ ep, which satisfy the following

conditions:

(A) For p ∈M \Mp, ψ is unramified at p, i.e., ψp(Up) = 1,
(B) For p ∈Mp, ψp(u) = (Nmkp/Fp

(u))−np , ∀u ∈ Up, where u 7→ u denotes

the residue class map.
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Here ψp : K×
p → F×

p denotes the local character induced by ψ via the canonical

map K×
p → CK .

For a given family (np)p∈Mp
, there is no idèle class character ψ satisfying

the conditions (A) and (B) of Theorem 4.1, or the set of all idèle characters
is a principal homogeneous space under the group of homomorphisms of the
narrow class group of K into F×

p . Therefore, if the narrow class number h+K
of K is prime to (p − 1), there is at most one ψ for a given family (np)p∈Mp

.
Furthermore, for an OK-group scheme G of order p corresponding to (np)p∈Mp

,
the Cartier dual of G corresponds to (ep − np)p∈Mp

.

4.2. Irreducibility and surjectivity of ρE,p

Let p be a prime number. Let E be an elliptic curve over a number field K.
If the representation ρE,p is reducible, then we have

(9) ρE,p ∼
(

φ1 ∗
0 φ2

)

, φi : GK → F×
p , i = 1, 2.

We note that each character φi induces φi : Gal(Kab/K) → F×
p , where K

ab is
the maximal abelian extension field of K.

Proposition 4.2. Assume that E is a semistable elliptic curve with good re-

duction at the primes of K over p. Then each character φi gives an OK-group

scheme G of order p with ψG = φi ◦ σK , where σK : CK → Gal(Kab/K) is the
reciprocity map.

Proof. Since E has good reduction at the primes p of K over p, the p-torsion
subgroup E[p] is an Op-group scheme. Therefore it follows that φi has a struc-
ture of an Op-group scheme of order p. Let SE denote the set of the primes of
K at which E has bad reduction. Let q be a prime of K with q ∤ p.

• In the case q 6∈ SE , the representation ρE,p is unramified at q by the cri-
terion of Néron-Ogg-Shafarevich (see [12, Chapter VII, Theorem 7.1]).
Hence φi is unramified at q.

• In the case q ∈ SE , there exists an unramified extension field L over
Kq of degree 1 or 2 such that E is isomorphic to the Tate curve Eq
over L, where q is the Tate parameter (see [11, §1.12]). By the theory

of Tate curves, we have E(L) ≃ L
×
/qZ. With this identification, we

clearly have E[p] ≃ (ζp · QZ)/qZ, where Q = q1/p ∈ L is a fixed p-th

root of q. Therefore the representation ρE,p restricted to Gal(L/L) has

the form
(

1 ∗
0 χ

)

, where χ is the cyclotomic character. Hence it follows
that φi is unramified at q.

The above argument shows that φi is unramified at the primes q of K with
q ∤ p. Therefore we can see that the character φi ◦ σK satisfies the conditions
(A) and (B) of Theorem 4.1. This completes the proof. �
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Let K be a cubic field. We next consider the structure of OK-group schemes
of order p. Our result is as follows:

Proposition 4.3. Let p be an odd prime number. Let K be a cubic field with

gcd(p − 1, h+K) = 1. If p satisfies either the condition (A) or (B) of Theorem

1.2, then the only OK-group schemes of order p are Z/pZ and µp, where Z/pZ
(resp. µp) is a constant (resp. diagonalizable) group scheme.

Proof. In the case where p is prime in OK , this is prove by Oort-Tate [9].
We next consider the case where p is not prime in OK . For simplicity, we only
consider the case whereK is a complex number field. Assume p ∤ NmK/Q(u−1),
where u is a fundamental unit of K such that u > 0 with respect to the only
one real place of K.

The basic idea is based on [4]. We first consider the case pOK = p21p2,
where p1, p2 are the primes of K over p. For the family (np1

, np2
) = (1, 0),

we assume that there is an idèle class character ψ : CK → F×
p satisfying

the conditions (A) and (B) of Theorem 4.1. According to class field theory,
there is a modulus of the form m = ∞ · p1 such that ψ induces a surjective
homomorphism ψ : Cm → F×

p , where Cm is the ray class group of K modulus
m. Let C∞ be the narrow class group of K. There is an exact sequence [8]

1 → U+/Um,1 → (OK/p1)
× → Cm → C∞ → 1,

where U+ is the group of totally positive units of K and Um,1 is the subgroup of

the elements of U+ which are congruent to 1 modulo p1. Since gcd(p−1, h+K) =
1, we see that a composition of the following maps

Φ : (OK/p1)
× → Cm

ψ−→ F×
p

is an isomorphism. Since u ∈ U+ and the image of U+ is in the kernel of the
isomorphism Φ, we have u− 1 ∈ p1. This is a contradiction to the condition p ∤
NmK/Q(u−1). Therefore there is no idèle character ψ satisfying the conditions
(A) and (B) of Theorem 4.1 for the family (np1

, np2
) = (1, 0). Furthermore,

considering the Cartier dual, the same result holds for the family (np1
, np2

) =
(1, 1). A similar argument shows that there is no idèle class character for
families (np1

, np2
) = (0, 1), (2, 0). Therefore the only OK-group schemes of

order p are Z/pZ and µp by Theorem 4.1.
In the case where pOK = p3, p1p2p3 or p1p2, a similar argument as above

shows the same result. This completes the proof. �

We note that Theorem 1.1 holds for the primes p ≥ 3 when E is restricted
to be semistable. Combining Propositions 4.2 and 4.3 with Theorem 1.1, we
can prove Theorem 1.2 as follows:

Proof of Theorem 1.2. The idea is based on the proof of [7, Theorem 4] or [4,
Théorème]. Suppose that ρE,p is reducible. Then ρE,p has the form (9). Since
φ1 ·φ2 = χ, it follows from Propositions 4.2 and 4.3 that either of φi is a trivial
character. Hence we see that E or E′ = E/µp has a p-torsion point. Since E
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and E′ have bad reduction at same primes, this is a contradiction to Theorem
1.1. This completes the proof of Theorem 1.2. �

Example. Let K be a cubic field with h+K = 1. Let E be an elliptic curve over
K with everywhere good reduction. By Theorem 1.2, we obtain the following
results on the irreducibility of ρE,p:

• Let K = Q[x]/(f(x)) be a complex cubic field defined by f(x) = x3 +
x − 1. We have that the element x ∈ OK is a fundamental unit of
K with x > 0 and NmK/Q(x − 1) = 1. We also have 3OK = p1p2

with f1 = 1 and f2 = 2, where fi is the residue degree of pi. Since
♯E(kp1

) ≤ 3+1+2
√
3 < 8, the elliptic curve E has no p-torsion points

for the primes p ≥ 11. By a similar argument of the proof of Theorem
1.2, we see that ρE,p is irreducible for the primes p ≥ 11. Furthermore,
since hK(ζp) = 1 for p = 3, 5 and 7, it follows from Theorem 1.2 that
ρE,p is irreducible for p = 3, 5 and 7. Therefore we have that ρE,p is
irreducible for the primes p ≥ 3.

• Let K = Q[x]/(f(x)) be a totally real cubic field defined by f(x) =
x3 − x2 − 3x − 1. We have that elements x, x2 − 2x ∈ OK are two
independent fundamental units of K with NmK/Q(x

2 − 1) = 4 and

NmK/Q((x
2 − 2x)2 − 1) = 16. We also have 2OK = p3. Since ♯E(kp) ≤

2 + 1 + 2
√
2 < 7, the elliptic curve E has no p-torsion points for the

primes p ≥ 7. By a similar argument of the proof of Theorem 1.2, we
see that ρE,p is irreducible for the primes p ≥ 7. Furthermore, since
hK(ζ3) = 1 and hK(ζ5) = 2, it follows from Theorem 1.2 that ρE,p is
irreducible for p = 3 and 5. Therefore we have that ρE,p is irreducible
for the primes p ≥ 3.

We give the following result mainly due to Serre [11]:

Proposition 4.4. Let K be a number field with h+K = 1 and let DK denote

the discriminant of K. Let E be a semistable elliptic curve over K with the

j-invariant jE. Let p be a prime such that p ∤ DK . If p = 2, 3 or 5, suppose
p ∤ v(jE) for some v ∈ SE, where SE is the set of the finite places v at which

E has bad reduction. If ρE,p is irreducible, then ρE,p is surjective.

Proof. See the proof of [11, Proposition 21] or [4, §3]. �

Combining the above result with Theorem 1.2, we obtain the following result
on the surjectivity of ρE,p.

Theorem 4.5. Let K be a cubic field with h+K = 1 and let DK denote the

discriminant of K. Let p be an odd prime number such that p ∤ DK. Suppose

that p ∤ hK(ζp) and ep < p − 1 for the primes p of K over p. Let E be a

semistable elliptic curve over K with BK,p-reduction. If p = 3 or 5, suppose
p ∤ v(jE) for some v ∈ SE. If p satisfies either the condition (A) or (B) of

Theorem 1.2, then ρE,p is surjective.
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Remark. In the case where K = Q or K is a quadratic field, we can show
similar results of Theorems 1.2 and 4.5 (see also [4] in the case where K is a
quadratic field). However, in general, it does not hold in the case [K : Q] ≥ 4.

4.3. K(ζp)-rational points of order p

Let K be a number field. Let E be an elliptic curve over K with a p-torsion
point. There exist an elliptic curve E∗ over K and a K-isogeny E → E∗ with
kernel Z/pZ. By the exact sequence (1), we have µp ⊂ E∗ and hence E∗ has
a K(ζp)-rational point of order p. For an elliptic curve E over K with BK,p-
reduction, we here consider the existence of aK(ζp)-rational point of E of order
p. By Theorem 1.2, we obtain the following result (cf. Theorem 1.1):

Proposition 4.6. Let p be an odd prime number. Let K be a cubic field with

gcd(p − 1, h+K) = 1. Suppose that p ∤ K(ζp) and ep < p − 1 for the primes p

of K over p. Let E be a semistable elliptic curve over K with BK,p-reduction.
If p satisfies either (A) or (B) of Theorem 1.2, then E has no K(ζp)-rational
points of order p.

Proof. Suppose that E has a K(ζp)-rational point of order p. Set L = K(E[p])
and M = K(ζp). Let G be a simple subgroup of E[p] as a Gal(L/K)-module.
Set Sp = Gal(L/M). We may assume that Sp is non-trivial. Then the order of

Sp is equal to p. Since Sp⊳Gal(L/K), we see that the set G(K)Sp of the Sp-fixed

points is a Gal(L/K)-submodule of G(K). Since ♯G(K) ≡ ♯G(K)Sp mod p, the
group G(K)Sp is non-trivial, and hence G(K) = G(K)Sp because G is simple.
Then G(K) is a Gal(M/K)-module. Since the group Gal(M/K) has exponent
dividing p− 1, the Fp[Gal(M/K)]-module G(K) is a product of 1-dimensional
eigenspaces. Since G is simple, there is only one such eigenspace, and hence G
has order p. Therefore the representation ρE,p is reducible. But this contradicts
to Theorem 1.2. This completes the proof of Proposition 4.6. �
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1–21.

[10] The PARI Group, Bordeaux, PARI/GP, available from http://pari.math.u-bordeaux.

fr/doc.html.
[11] J.-P. Serre, Propriétés galoisiennes des points d’ortre fini des courbes elliptiques, Invent.

Math. 15 (1972), no. 4, 259–331.
[12] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106,

Springer-Verlag, Berlin-Heidelberg New York, 1994.
[13] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83,

Springer-Verlag, Berlin-Heidelberg New York, 1982.
[14] M. Yasuda, Torsion points of elliptic curves with bad reduction at some primes, to

appear in Commentarii Math. Univ. St. Pauli.

Fujitsu Laboratories Ltd.

4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki

211-8588, Japan

E-mail address: myasuda@labs.fujitsu.com


