• Title/Summary/Keyword: arithmetic word problem

Search Result 10, Processing Time 0.025 seconds

Survey for the Remedial Instruction on Arithmetic Word Problems Solving of Elementary School Students (초등학생의 사칙계산 문장제 해결 보정교육을 위한 기초 연구)

  • Lee, Bong-Ju;Moon, Seung-Ho
    • Education of Primary School Mathematics
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • It is undeniably important to bring up a solution capability of arithmetic word problems in the elementary mathematical education. The goal of this study is to acquire the implication for remedial instruction on arithmetic word problems solving through surveying elementary school students' difficulties in the solving of arithmetic word problems. In order to do it, this study was intended to analyze the following two aspects. First, it was analyzed that they generally felt more difficulties in which field among addition, subtraction, multiplication and division word problems. Second, with the result of the first analysis, it was examined that they solved it by imagining as which sphere of the other word problems. Also, the cause of their error on the word problem solving was analyzed by the interview. From the foregoing analyses, the following implications for remedial instruction on arithmetic word problems solving are acquired. First, the accumulation of learning deficiency must be diminished through the remedial instruction. Second, it must help students to understand the given problem and to make of what the goal of problem is. Third, it must help students to form a good habit for reading the problem and to understand the context of problem. forth, the teacher must help students to review and reflect their problem-solving processes.

  • PDF

The Effects of Small-Group Mathematical Word Problem Activity with Concrete Materials on 5 Years Old Children's Mathematical Abilities and Attitudes (구체물을 이용한 소집단 문장제 수학활동이 유아의 수학 능력과 태도에 미치는 영향)

  • Kwon, Eunseo;Lee, Jeonghwa
    • Korean Journal of Childcare and Education
    • /
    • v.13 no.6
    • /
    • pp.69-86
    • /
    • 2017
  • Objective: This study was conducted to investigate the effects of small-group arithmetic word problem activities with concrete materials on 5 year old children's mathematical ability and attitude. Methods: A total of 34 five-year-old children (control group 16 children, experimental group18 children) attending two kindergartens in P city participated in this study. Fifteen small-group arithmetic word problem activities with concrete materials were conducted in the classroom of the experimental group twice a week for eight weeks. Before and after the activities, all the participants individually took a basic arithmetic test, mathematical word problem solving test, and mathematical attitudes test. Results: First, we observed that the children in the experimental group achieved significantly higher scores on the mathematical ability tests, including the basic arithmetic test and mathematical word problems solving test when compared to the children in the control group. Second, we also found that children in the experimental group showed higher improvement in the mathematical attitudes test than their counterparts. Conclusion/Implications: The results of this study suggest that small-group arithmetic word problem activities with concrete materials are effective in improving children's mathematical ability and attitudes.

The Study on Elementary Preservice Teachers' Content Knowledge in Arithmetic and Algebra Word Problems Solving Strategy (산술과 대수 영역의 문장제 문제해결 전략에 대한 초등 예비교사의 내용지식 연구)

  • Lee, Jeong-Hak
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.1083-1099
    • /
    • 2014
  • The purpose of this study is to analyze that The arithmetic and algebraic word problem solving skill, strategy preference, and assessment ability of elementary preservice teachers is investigated using a statistical methodology. The research findings are as follows. First, elementary preservice teachers demonstrated logical and delicate problem solving behaviors in arithmetic and algebraic word problem solving. And elementary preservice teachers prefer to create a formula and table strategy in problem solving of the arithmetic question. Second, there was meaningful difference in the math and english elementary preservice teachers' appreciations with significant level of 0.05. And there was not meaningful difference in the 1 and 4 grade elementary preservice teachers' appreciations with significant level of ${\alpha}=0.05$. Results of the study suggest that teachers education course need to improve elementary preservice teachers' word problem solving skill, strategy preference, and assessment ability in the arithmetic and algebraic.

An Analysis on Problem Solving Ability of 3rd Grade Types of Multiplication and Division Word Problem (곱셈과 나눗셈 문장제 유형에 따른 문제해결능력)

  • Lim, Ja Sun;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.501-525
    • /
    • 2015
  • This study analyzes arithmetic word problem of multiplication and division in the mathematics textbooks and workbooks of 3rd grade in elementary school according to 2009 revised curriculum. And we analyzes type of the problem solving ability which 4th graders prefer in the course of arithmetic word problem solving and the problem solving ability as per the type in order to seek efficient teaching methods on arithmetic word problem solving of students. First, in the mathematics textbook and workbook of 3rd grade, arithmetic word problem of multiplication and division suggested various things such as thought opening, activities, finish, and let's check. As per the semantic element, multiplication was classified into 5 types of cumulated addition of same number, rate, comparison, arrayal and combination while division was classified into 2 types of division into equal parts and division by equal part. According to result of analysis, the type of cumulated addition of same number was the most one for multiplication while 2 types of division into equal parts and division by equal part were evenly spread in division. Second, according to 1st test result of arithmetic word problem solving ability in the element of arithmetic operation meaning, 4th grade showed type of cumulated addition of same number as the highest correct answer ratio for multiplication. As for division, 4th grade showed 90% correct answer ratio in 4 questionnaires out of 5 questionnaires. And 2nd test showed arithmetic word problem solving ability in the element of arithmetic operation construction, as for multiplication and division, correct answer ratio was higher in the case that 4th grade students did not know the result than the case they did not know changed amount or initial amount. This was because the case of asking the result was suggested in the mathematics textbook and workbook and therefore, it was difficult for students to understand such questions as changed amount or initial amount which they did not see frequently. Therefore, it is required for students to experience more varied types of problems so that they can more easily recognize problems seen from a textbook and then, improve their understanding of problems and problem solving ability.

The Relationship between Posing and Solving Arithmetic Word Problems among Chinese Elementary School Children

  • Chen, Limin;Van Dooren, Wim;Chen, Qi;Verschaffel, Lieven
    • Research in Mathematical Education
    • /
    • v.11 no.1
    • /
    • pp.1-31
    • /
    • 2007
  • Recent research has documented that there is a close relationship between problem posing and problem solving in arithmetic. However, most studies investigated the relationship between problem posing and problem solving only by means of standard problem situations. In order to overcome that shortcoming, a pilot study with Chinese fourth-graders was done to investigate this relationship using a non-standard, realistic problem situation. The results revealed a significant positive relationship between students' problem posing and solving abilities. Based on that pilot study, a more extensive and systematic ascertaining study was carried out to confirm the observed relationship between problem posing and problem solving among Chinese elementary school children. Results confirmed that there was indeed a close relationship between both skills.

  • PDF

The Analysis of Children's Understanding of Operations on Whole Numbers (자연수의 사칙연산에 대한 아동의 이해 분석)

  • Whang, Woo-Hyung;Kim, Kyung-Mi
    • The Mathematical Education
    • /
    • v.47 no.4
    • /
    • pp.519-543
    • /
    • 2008
  • The study has been conducted with 29 children from 4th to 6th grades to realize how they understand addition, subtraction, multiplication, and division of whole numbers, and how their understanding influences solving of one-step word problems. Children's understanding of operations was categorized into "adding" and "combination" for additions, "taking away" and "comparison" for subtractions, "equal groups," "rectangular arrange," "ratio," and "Cartesian product" for multiplications, and "sharing," "measuring," "comparison," "ratio," "multiplicative inverse," and "repeated subtraction" for divisions. Overall, additions were mostly understood additions as "adding"(86.2%), subtractions as "taking away"(86.2%), multiplications as "equal groups"(100%), and divisions as "sharing"(82.8%). This result consisted with the Fischbein's intuitive models except for additions. Most children tended to solve the word problems based on their conceptual structure of the four arithmetic operations. Even though their conceptual structure of arithmetic operations helps to better solve problems, this tendency resulted in wrong solutions when problem situations were not related to their conceptual structure. Children in the same category of understanding for each operations showed some common features while solving the word problems. As children's understanding of operations significantly influences their solutions to word problems, they needs to be exposed to many different problem situations of the four arithmetic operations. Furthermore, the focus of teaching needs to be the meaning of each operations rather than computational algorithm.

  • PDF

Crossing the Gap between Elementary School Mathematics and Secondary School Mathematics: The Case of Systems of Linear Equations (그림그리기 전략을 통한 초.중등수학의 연립방정식 지도 연결성 강화)

  • Kwon, Seok-Il;Yim, Jae-Hoon
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.91-109
    • /
    • 2007
  • This study deals with the problem of transition from arithmetic to algebra and the relationship between elementary and secondary school mathematics for systems of linear equations. In elementary school, activity for solving word problems related to systems of linear equations in two variables falls broadly into using two strategies: Guess and check and making a table. In secondary school, those problems are solved algebraically, for example, by solving systems of equations using the technique of elimination. The analysis of mathematics textbooks shows that there is no link between strategies of elementary school mathematics and secondary school mathematics. We devised an alternative way to reinforce link between elementary and secondary school mathematics for systems of linear equations. Drawing a diagram can be introduced as a strategy solving word problems related to systems of linear equations in two variables in elementary school. Moreover it is closely related to the idea of the technique of elimination of secondary school mathematics. It may be a critical juncture of elementary-secondary school mathematics in the case of systems of linear equations in two variables.

  • PDF

Analysis of the 3rd Graders' Solving Processes of the Word Problems by Nominalization (수학 문장제의 명사화 여부에 따른 초등학교 3학년의 해결 과정 분석)

  • Kang, Yunji;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.26 no.2
    • /
    • pp.83-97
    • /
    • 2023
  • Nominalization is one of the grammatical metaphors that makes it easier to mathematize the target that needs to be converted into a formula, but it has the disadvantage of making problem understanding difficult due to complex and compressed sentence structures. To investigate how this nominalization affects students' problem-solving processes, an analysis was conducted on 233 third-grade elementary school students' problem solving of eight arithmetic word problems with or without nominalization. The analysis showed that the presence or absence of nominalization did not have a significant impact on their problem understanding and their ability to convert sentences to formulas. Although the students did not have any prior experience in nominalization, they restructured the sentences by using nominalization or agnation in the problem understanding stage. When the types of nominalization change, the rate of setting the formula correctly appeared high. Through this, the use of nominalization can be a pedagogical strategy for solving word problems and can be expected to help facilitate deeper understanding.

Algebraic Reasoning Abilities of Elementary School Students and Early Algebra Instruction(1) (초등학생의 대수 추론 능력과 조기 대수(Early Algebra) 지도(1))

  • Lee, Hwa Young;Chang, Kyung Yoon
    • School Mathematics
    • /
    • v.14 no.4
    • /
    • pp.445-468
    • /
    • 2012
  • This study is tried in order to link informal arithmetic reasoning to formal algebraic reasoning. In this study, we investigated elementary school student's non-formal algebraic reasoning used in algebraic problem solving. The result of we investigated algebraic reasoning of 839 students from grade 1 to 6 in two schools, Korea, we could recognize that they used various arithmetic reasoning and pre-formal algebraic reasoning which is the other than that is proposed in the text book in word problem solving related to the linear systems of equation. Reasoning strategies were diverse depending on structure of meaning and operational of problems. And we analyzed the cause of failure of reasoning in algebraic problem solving. Especially, 'quantitative reasoning', 'proportional reasoning' are turned into 'non-formal method of substitution' and 'non-formal method of addition and subtraction'. We discussed possibilities that we are able to connect these pre-formal algebraic reasoning to formal algebraic reasoning.

  • PDF

Neuropsychological Approaches to Mathematical Learning Disabilities and Research on the Development of Diagnostic Test (신경심리학적 이론에 근거한 수학학습장애의 유형분류 및 심층진단검사의 개발을 위한 기초연구)

  • Kim, Yon-Mi
    • Education of Primary School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2011
  • Mathematics learning disabilities is a specific learning disorder affecting the normal acquisition of arithmetic and spatial skills. Reported prevalence rates range from 5 to 10 percent and show high rates of comorbid disabilities, such as dyslexia and ADHD. In this study, the characteristics and the causes of this disorder has been examined. The core cause of mathematics learning disabilities is not clear yet: it can come from general cognitive problems, or disorder of innate intuitive number module could be the cause. Recently, researchers try to subdivide mathematics learning disabilities as (1) semantic/memory type, (2) procedural/skill type, (3) visuospatial type, and (4) reasoning type. Each subtype is related to specific brain areas subserving mathematical cognition. Based on these findings, the author has performed a basic research to develop grade specific diagnostic tests: number processing test and math word problems for lower grades and comprehensive math knowledge tests for the upper grades. The results should help teachers to find out prior knowledge, specific weaknesses of students, and plan personalized intervention program. The author suggest diagnostic tests are organized into 6 components. They are number sense, conceptual knowledge, arithmetic facts retrieval, procedural skills, mathematical reasoning/word problem solving, and visuospatial perception tests. This grouping will also help the examiner to figure out the processing time for each component.