• Title/Summary/Keyword: arithmetic logic unit

Search Result 56, Processing Time 0.02 seconds

Analysis of the Borrow Look-ahead Subtracter Design (Borrow Look-ahead Subtracter 설계에 대한 분석)

  • Yu, Jang-Pyo;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.784-786
    • /
    • 2000
  • This paper implements and analyzes logically the Borrow Look-ahead Subtracter using Borrow Generator and Borrow Propagator. In subtracting calculation, we improve the calculating efficiency with using 4-bit subtracter which has Borrow Look-ahead Subtracters connection, and show that this is compatible with adder using the concept of Carry Generator and Carry Propagator. This subtracter may be useful in frequent subtracting calculation. We think this approach makes it possible to implement simple ALU(Arithmetic Logic Unit) with combining the concept of Borrow Look-ahead Subtracter and Carry Look-ahead Adder.

  • PDF

Simulation and Mask Drawing of Single Flux Quantum AND gate (단자속 양자 AND gate의 시뮬레이션과 Mask Drawing)

  • 정구락;임해용;박종혁;강준희;한택상
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.35-39
    • /
    • 2002
  • We have simulated and laid out a Single Flux Quantum(SFQ) AND gate for Arithmetic Logic Unit by using XIC, WRspice and Lmeter. SFQ AND gate circuit is a combination of two D Flip-Flop. D Flip-Flop and dc SQUID are the similar shape form the fact that it has the loop inductor and two Josephson junction We obtained perating margins and accomplished layout of the AND gate. We got the margin of $\pm$38%. over. After layout, we drew mask for fabrication of SFQ AND sate. This mask was included AND gate, dcsfq, sfqdc, rs flip-flop and jtl.

5 ㎓ test of a SFQ 1-bit ALU (단자속 양자 1-bit ALU의 5 ㎓ 측정)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.117-119
    • /
    • 2003
  • We have designed fabricated, and tested an RSFQ(Rapid Single Flux Quantum) 1-bit ALU (Arithmetic Logic Unit). The 1-bit ALU was composed of a half adder and three SFQ DC switches. Three DC switches were attached to the two output ports of an ALU for the selection of each function from the available functions that were AND, OR, XOR and ADD. And we also attached two DC switches at the input ports of the half adder so that the input data were controlled using the function generators operating at low speed while we tested the circuit at high speed. The test bandwidth was from 1KHz to 5 ㎓. The chip was tested at the liquid helium temperature of 4.2 K.

  • PDF

Design and Measurements of an RSFQ NDRO circuit (단자속 양자 NDRO 회로의 설계와 측정)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.76-78
    • /
    • 2003
  • We have designed and tested an RSFQ (Rapid Single Flux Quantum) NDRO (Non Destructive Read Out) circuit for the development of a high speed superconducting ALU (Arithmetic Logic Unit). When designing the NDRO circuit, we used Julia, XIC and Lmeter for the circuit simulations and layouts. We obtained the simulation margins of larger than $\pm$25%. For the tests of NDRO operations, we attached the three DC/SFQ circuits and two SFQ/DC circuits to the NDRO circuit. In tests, we used an input frequency of 1 KHz to generate SFQ Pulses from DC/SFQ circuit. We measured the operation bias margin of NDRO to be $\pm$15%. The circuit was measured at the liquid helium temperature.

  • PDF

Design and Characteristic of the SFQ Confluence buffer and SFQ DC switch (SFQ 컨플런스 버퍼와 DC 스위치의 디자인과 특성)

  • 김진영;백승헌;정구락;임해용;박종혁;강준희;한택상
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.113-116
    • /
    • 2003
  • Confluence buffers and single flux quantum (SFQ) switches are essential components in constructing a high speed superconductive Arithmetic Logic Unit (ALU). In this work, we developed a SFQ confluence buffer and an SFQ switch. It is very important to optimize the circuit parameters of a confluence buffer and an SFQ switch to implement them into an ALU. The confluence buffer that we are currently using has a small bias margin of $\pm$11%. By optimizing it with a Josephson circuit simulator, we improved the design of confluence buffer. Our simulation study showed that we improved bias global margin of 10% more than the existent confluence buffer. In simulations, the minimal bias margin was $\pm$33%. We also designed, fabricated, and tested an SFQ switch operating in a DC mode. The mask layout used to fabricate the SFQ switch was obtained after circuit optimization. The test results of our SFQ switch showed that it operated correctly and had a reasonably wide margin of $\pm$15%.

  • PDF

RSFQ DFFC Circuit Design for Usage in developing ALU (ALU의 개발을 위한 RSFQ DFFC 회로의 설계)

  • 남두우;김규태;강준희
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.123-126
    • /
    • 2003
  • RSFQ (Rapid Single Flux Quantum) circuits are used in many practical applications. RSFQ DFFC (Delay Flip-Flop with complementary outputs) circuits can be used in a RAM, an ALU (Arithmetic Logic Unit), a microprocessor, and many communication devices. A DFFC circuit has one input, one switch input, and two outputs (output l and output 2). DFFC circuit functions in such way that output 1 follows the input and output 2 is the complement of the input when the switch input is "0." However, when there is a switch input "1."the opposite output signals are generated. In this work, we have designed an RSFQ DFFC circuit based on 1 ㎄/$\textrm{cm}^2$ niobium trilayer technology. As circuit design tools, we used Xic, WRspice, and Lmeter After circuit optimization, we could obtain the bias current margins of the DFFC circuit to be above 32%.

  • PDF

Kinematic Wave Rainfall-Runoff Model Using CUDA FORTRAN (CUDA FORTRAN을 이용한 운동파 강우유출모형)

  • Kim, Boram;Kim, Dae-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.271-271
    • /
    • 2018
  • 그래픽 처리 장치(GPU: Graphic Processing Units)는 그래픽 처리에 특화된 수많은 산술논리연산자 (ALU: Arithmetic Logic Unit)와 이에 관련된 인스트럭션Instruction)으로 인해 중앙 처리 장치(CPU: Central Processing Units) 보다 훨씬 빠른 계산 처리를 수행할 수 있다. 최근에는 FORTRAN에 의해 구현된 많은 수치모형들이 현실적인 모델링 방법의 발달로 인해 더 많은 계산량과 계산시간을 필요로 한다. 이 연구에서는 GPU 상의 범용 계산GPGPU : General-Purpose computing on Graphics Processing Units) 기반 운동파 강우유출모형(Kinematic Wave Rainfall-Runoff Model)이 CUDA(Compute Unified Device Architecture) FORTRAN을 사용하여 구현되었다. CUDA FORTRAN 운동파 강우유출모형의 계산 결과는 검증된 CPU 기반 운동파 강우유출모형의 계산 결과와 비교하여 검증되었으며, 잘 일치함을 보여 주었다. CUDA FORTRAN 운동파 강우유출모형은 CPU 기반 모형에 비해 약 20 배 더 빠른 계산 시간을 보였다. 또한 계산 영역이 커짐에 따라 CPU 버전에 비해 CUDA FORTRAN 버전의 계산 효율이 향상되었다.

  • PDF

Design of A Reed-Solomon Code Decoder for Compact Disc Player using Microprogramming Method (마이크로프로그래밍 방식을 이용한 CDP용 Reed-Solomon 부호의 복호기 설계)

  • 김태용;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1495-1507
    • /
    • 1993
  • In this paper, an implementation of RS (Reed-Solomon) code decoder for CDP (Compact Disc Player) using microprogramming method is presented. In this decoding strategy, the equations composed of Newton's identities are used for computing the coefficients of the error locator polynomial and for checking the number of erasures in C2(outer code). Also, in C2 decoding the values of erasures are computed from syndromes and the results of C1(inner code) decoding. We pulled up the error correctability by correcting 4 erasures or less. The decoder contains an arithmetic logic unit over GF(28) for error correcting and a decoding controller with programming ROM, and also microinstructions. Microinstructions are used for an implementation of a decoding algorithm for RS code. As a result, it can be easily modified for upgrade or other applications by changing the programming ROM only. The decoder is implemented by the Logic Level Modeling of Verilog HDL. In the decoder, each microinstruction has 14 bits( = 1 word), and the size of the programming ROM is 360 words. The number of the maximum clock-cycle for decoding both C1 and C2 is 424.

  • PDF

A Design and Implementation of 16-bit Adiabatic ALU for Micro-Power Processor (초저전력 프로세서용 16-bit 단열 ALU의 설계 및 구현)

  • Lee, Han-Seung;Na, In-Ho;Moon, Yong;Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • A 16-bit adiabatic ALU(arithmetic logic unit) is designed. A simplified four-phase clock generator is also designed to provide supply clocks for the adiabatic circuits. All the clock line charge on the capacitive interconnections is recovered to recycle energy. Adiabatic circuits are designed based on ECRL (efficient charge recovery logic) using a 0.35${\mu}{\textrm}{m}$ CMOS technology. The post-layout simulation results show that the power consumption of the adiabatic ALU including supply clock generator is reduced by a factor of 1.15-1.77 compared to the conventional CMOS ALU with the same structure.

A Study on the Interframe Image Coding Using Motion Compensated and Classified Vector Quantizer (Ⅱ : Hardware Implementation) (이동 보상과 분류 벡터 양자화기를 이용한 영상 부호화에 관한 연구 (Ⅱ: 하드웨어 실현))

  • Jeon, Joong-Nam;Shin, Tae-Min;Choi, Sung-Nam;Park, Kyu-Tae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.21-30
    • /
    • 1990
  • This paper describes a hardware implementation of the interframe monochrome video CODEC using a MC-CVQ(Motion Compensated and Classified Vector Quantization) algorithm. The specifications of this CODEC are (1) the resolution of image is $128{\times}128$ pixels, and (2) the transmission rates are about 10frames/sec at the 64Kbps channel. In order to design the CODEC under these conditions, it is implemented by a multiprocessor system composed of MC unit, CVQ nuit and decoder unit, which are controlled by microprogramming technique. And the 3~stage pipelined ALU(Arithmetic and Logic Unit) is adopted to calculate the minimum error distance in the MC unit and CVQ nuit. The realized system shows that the transmission rates are 6-15 frames/sec according to the relative motion of the video signal.

  • PDF