• 제목/요약/키워드: arc-magnetron hybrid coating

검색결과 14건 처리시간 0.021초

하이브리드 공정으로 제조한 TiAlSiN 박막의 특성 (Mechanical Properties of TiAlSiN films Coated by Hybrid Process)

  • 송민아;양지훈;정재훈;김성환;정재인
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.174-180
    • /
    • 2014
  • In this study, TiAlSiN coatings have been successfully synthesized on stainless steel and tungsten carbide substrate by a hybrid coating method employing a cathodic arc and a magnetron sputtering source. TiAl and Si target were vaporized with the cathodic arc source and the magnetron sputtering source, respectively. Process gas was the mixture of nitrogen and argon gas. With the increase of Si content, the crystallinity and the grain size of TiAlSiN film was decreased. At the Si content of more than 8 at.%, grain size of TiAlSiN was saturated at around 2 nm. The hardness value of the TiAlSiN film increased with incorporation of Si, and had the maximum value of ~ 3,233 Hv at the Si content of 9.2 at.%. The oxidation resistance of TiAlSiN film was enhanced with the increase of Si content.

WC/C 다층박막의 합성 및 기계적 특성에 관한 연구 (A study on the synthesis and mechanical properties of WC/C multilayered films)

  • 명현식;한전건
    • 한국표면공학회지
    • /
    • 제35권3호
    • /
    • pp.121-126
    • /
    • 2002
  • WC/C multilayered films were deposited by arc ion plating and magnetron sputter hybrid system with various $C_2$H$_2$ flow rates and bias voltages. The coatings have been characterized with respect to their chemical composition (Glow Discharge Optical Emission Spectroscopy), hardness(Knoop micro-hardness), residual stress(Laser beam bending) and friction coefficient(Ball on disc type wear test). Deposition rate, microhardness and residual stress of WC/C films were observed to increase with increasing the $C_2$$H_2$ flow rates. The highest hardness and residual stress were measured to be 26.5 GPa and 1.1GPa for, WC/C film deposited at substrate bias of -100V. WC/C multilayered film was obtained very low friction coefficient(~0.1).

AIP 와 스퍼터링으로 복합증착된 420 스테인리스강의 TiN과 CrN 박막에 미치는 중간층의 영향 (Effect of Interlayer on TiN and CrN Thin Films of STS 420 Hybrid-Deposited by AlP and DC Magnetron Sputtering)

  • 최웅섭;김현승;박범수;이경구;이도재;이광민
    • 한국재료학회지
    • /
    • 제17권5호
    • /
    • pp.256-262
    • /
    • 2007
  • Effects of interlayer and the combination of different coating methods on the mechanical and corrosion behaviors of TiN and CrN coated on 420 stainless steel have been studied. STS 420 specimen were tempered at $300^{\circ}C$ for 1 hr in vacuum furnace. The TiN and CrN thin film with 2 ${\mu}m$ thickness were coated by arc ion plating and DC magnetron sputtering following the formation of interlayer for pure titanium and chromium with 0.2 ${\mu}m$ thickness. The microstructure and surface analysis of the specimen were conducted by using SEM, XRD and roughness tester. Mechanical properties such as hardness and adhesion also were examined. XRD patterns of TiN thin films showed that preferred TiN (111) orientation was observed. The peaks of CrN (111) and $Cr_2N$ (300) were only observed in CrN thin films deposited by arc ion plating. Both TiN and CrN deposited by arc ion plating had the higher adhesion and hardness compared to those formed by magnetron sputtering. The specimen of TiN and CrN on which interlayer deposited by magnetron sputtering and thin film deposited by arc ion plating had the highest adhesion with 22.2 N and 19.2 N. respectively. TiN and CrN samples shown the most noble corrosion potentials when the interlayers were deposited by using magnetron sputtering and the metal nitrides were deposited by using arc ion plating. The most noble corrosion potentials of TiN and CrN were found to be approximately -170 and -70 mV, respectively.

Si 함량에 따른 Ti-Al-Si-C-N 코팅막의 미세구조와 기계적 특성의 변화에 관한 연구 (Effect of Si on the Microstructure and Mechanical Properties of Ti-Al-Si-C-N Coatings)

  • 홍영수;권세훈;김광호
    • 한국표면공학회지
    • /
    • 제42권2호
    • /
    • pp.73-78
    • /
    • 2009
  • Quinary Ti-Al-Si-C-N films were successfully synthesized on SUS 304 substrates and Si wafers by a hybrid coating system combining an arc ion plating technique and a DC reactive magnetron sputtering technique. In this work, the effect of Si content on the microstructure and mechanical properties of Ti-Al-C-N films were systematically investigated. It was revealed that the microstructure of Ti-Al-Si-C-N coatings changed from a columnar to a nano-composite by the Si addition. Due to the nanocomposite microstructure of Ti-Al-Si-C-N coatings, the microhardness of The Ti-Al-Si-C-N coatings significantly increased up to 56 GPa. In addition the average friction coefficients of Ti-Al-Si-C-N coatings were remarkably decreased with Si addition. Therefore, Ti-Al-Si-C-N coatings can be applicable as next-generation hard-coating materials due to their improved hybrid mechanical properties.

하이브리드 코팅 시스템에 의해 합성된 Zr-Al-N 박막의 미세구조와 기계적 특성, 산화 특성, 부식특성 (Microstructure, Mechanical, Oxidation and Corrosion Properties of Zr-Al-N Coatings Synthesized by the Hybrid Coating System)

  • 최하송;장재호;안은솔;김광호
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.242-247
    • /
    • 2013
  • Zr-Al-N coatings were synthesized by the hybrid coating system combining arc ion plating and DC magnetron sputtering from a Zr and an Al target in argon-nitrogen atmosphere, respectively. By changing the power applied on the Al cathodes, the Zr-Al-N coatings with various Al contents were deposited. The microstructure and chemical compositions of the Zr-Al-N coatings were studied by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). With increasing of Al content in the coatings, the solid solution (Zr, Al)N crystallites were observed in the Zr-Al-N coatings. The nanohardness of the Zr-Al-N coatings exhibited a maximum value of 42 GPa for the Zr-Al (7.9 at.%)-N, and decreased with further increase in Al content in the coatings. The oxidation and corrosion behavior of the Zr-Al-N coatings revealed better properties compared than those of ZrN coatings due to the formation of a solid solution.

Effect of Working Pressure and Substrate Bias on Phase Formation and Microstructure of Cr-Al-N Coatings

  • Choi, Seon-A;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Oh, Yoon-Suk
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.511-517
    • /
    • 2017
  • With different working pressures and substrate biases, Cr-Al-N coatings were deposited by hybrid physical vapor deposition (PVD) method, consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) processes. Cr and Al targets were used for the arc ion plating and the sputtering process, respectively. Phase analysis, and composition, binding energy, and microstructural analyses were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), respectively. Surface droplet size of Cr-Al-N coatings was found to decrease with increasing substrate bias. A decrease of the deposition rate of Cr-Al-N films was expected due to the increase of substrate bias. The coatings were grown with textured CrN phase and (111), (200), and (220) planes. X-ray diffraction data show that all Cr-Al-N coatings shifted to lower diffraction angles due to the addition of Al. The XPS results were used to determine the $Cr_2N$, CrN, and (Cr,Al)N binding energies. The compositions of the Cr-Al-N films were measured by XPS to be Cr 23.2~36.9 at%, Al 30.1~40.3 at%, and N 31.3~38.6 at%.

새로운 고경도 Ti-Mo-Si-N 코팅막의 합성 및 기계적 특성 (Synthesis and Characteristics of New Quaternary Superhard Ti-Mo-Si-N Coatings)

  • 전진우;홍승균;김광호
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.245-249
    • /
    • 2006
  • In this study, ternary Ti-Mo-N and new quaternary Ti-Mo-Si-N coatings were synthesized on steel substrates(AISI D2) and Si wafers by a hybrid coating system of arc ion plating (AIP) using Ti target and d.c. magnetron sputtering technique using Mo and Si targets in $N_2/Ar$ gaseous mixture. Ternary Ti-Mo-N coatings were substitutional solid-solution of (Ti, Mo)N and showed maximum hardness of approximately 30 GPa at the Mo content of ${\sim}10$. %. The Ti-Mo-Si-N coating with the Si content of 8.8 at. % was a composite consisting of fine (Ti, Mo)N crystallites and amorphous $Si_3N_4$ phase. The hardness of the Ti-Mo-Si(8.8 at. %)-N coatings exhibited largely increased hardness value of ${\sim}48$ GPa due to the microstructural evolution to the fine composite microstructure and the refinement of (Ti, Mo)N crystallites. The average friction coefficient of the Ti-Mo-Si-N coatings largely decreased with increase of Si content. The microstructures of Ti-Mo-Si-N coatings were investigated with instrumental analyses of XRD, XPS, and HRTEM in this work.

XPS 분석을 통한 CrMoN 코팅의 마찰마모 거동 연구 (Tribological Behavior Analysis of CrMoN Coating by XPS)

  • 양영환;여인웅;박상진;임대순;오윤석
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.549-556
    • /
    • 2012
  • The tribological behavior of CrMoN films with respect to surface chemistry was investigated by using X-ray photoelectron spectroscopy (XPS). All of the films were prepared from a hybrid PVD system consisting of DC unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) sources. The tribological property of the films was evaluated by a friction coefficient using a Ball-on-disk type tribometer. The chemistry of wear track was analyzed by energy dispersive spectroscopy (EDS) and XPS. The friction coefficient was measured to be 0.4 for the CrMoN film, which is lower than that of a monolithic CrN film. EDS and XPS results imply the formation of an oxide layer on the coating surface, which was identified as molybdenum oxide phases, known to be a solid lubricant during the wear test.

하이브리드 코팅시스템에 의한 Cr-Si-O-N 코팅막 합성 및 기계적 성질 (Syntheses and Mechanical Properties of Quaternary Cr-Si-O-N Coatings by Hybrid Coating System)

  • 이정두;왕치민;김광호
    • 한국표면공학회지
    • /
    • 제43권5호
    • /
    • pp.238-242
    • /
    • 2010
  • In the present work, the influence of oxide on the Cr-Si-N coatings was investigated for the Cr-Si-O-N coatings on AISI 304 and Si wafer deposited by hybrid system, which combines the DC magnetron sputtering technique and arc ion plating (AIP) using Cr and Si target in an $Ar/N_2/O_2$ gaseous mixture. As the O content in the Cr-Si-N coatings increased, the diffraction patterns of the Cr-Si-O-N coatings showed CrN and $Cr_2O_3$ phases. However, as the O content increased to 28.8 at.%, diffraction peak of $Cr_2O_3$ was disappeared in the Cr-Si-O-N coating. The $d_{200}$ value was decreased with increasing of O content. The average grain size increased from about 40 nm to 65 nm as the O content increased. The maximum micro-hardness of the Cr-Si-O-N coating was obtained 4507 Hk at the O content of 24.8 at.%. The average friction coefficient of the Cr-Si-O-N coatings was gradually decreased by increasing the O content and the average friction coefficient decreased from 0.37 to 0.25 by increasing the O content. These results indicated that amorphous phase was increased in the Cr-Si-O-N coatings by increasing of O content.