DOI QR코드

DOI QR Code

Mechanical Properties of TiAlSiN films Coated by Hybrid Process

하이브리드 공정으로 제조한 TiAlSiN 박막의 특성

  • Song, Min-A (System Solution Research Center, Research Institute of Industrial Science & Technology) ;
  • Yang, Ji-Hoon (System Solution Research Center, Research Institute of Industrial Science & Technology) ;
  • Jung, Jae-Hun (System Solution Research Center, Research Institute of Industrial Science & Technology) ;
  • Kim, Sung-Hwan (System Solution Research Center, Research Institute of Industrial Science & Technology) ;
  • Jeong, Jae-In (System Solution Research Center, Research Institute of Industrial Science & Technology)
  • 송민아 (포항산업과학연구원 시스템솔루션연구센터) ;
  • 양지훈 (포항산업과학연구원 시스템솔루션연구센터) ;
  • 정재훈 (포항산업과학연구원 시스템솔루션연구센터) ;
  • 김성환 (포항산업과학연구원 시스템솔루션연구센터) ;
  • 정재인 (포항산업과학연구원 시스템솔루션연구센터)
  • Received : 2014.08.05
  • Accepted : 2014.08.25
  • Published : 2014.08.30

Abstract

In this study, TiAlSiN coatings have been successfully synthesized on stainless steel and tungsten carbide substrate by a hybrid coating method employing a cathodic arc and a magnetron sputtering source. TiAl and Si target were vaporized with the cathodic arc source and the magnetron sputtering source, respectively. Process gas was the mixture of nitrogen and argon gas. With the increase of Si content, the crystallinity and the grain size of TiAlSiN film was decreased. At the Si content of more than 8 at.%, grain size of TiAlSiN was saturated at around 2 nm. The hardness value of the TiAlSiN film increased with incorporation of Si, and had the maximum value of ~ 3,233 Hv at the Si content of 9.2 at.%. The oxidation resistance of TiAlSiN film was enhanced with the increase of Si content.

Keywords

References

  1. C. C. Koch, D. G. Morris, K. Lu, A. Inoue, MRS Bul., 24 (1999) 146.
  2. A. A. Voevodin, J. S. Zabinski, Thin Solid Films, 370 (2000) 223. https://doi.org/10.1016/S0040-6090(00)00917-2
  3. K. H. Kim, S. R. Choi, S. Y. Yoon, Surf. Coat. Technol., 298 (2002) 243.
  4. S. Veprek, J. Vac. Sic. Technol. A, 17 (1999) 2401. https://doi.org/10.1116/1.581977
  5. J. Musil, Surf. Coat. Technol., 125 (2000) 322. https://doi.org/10.1016/S0257-8972(99)00586-1
  6. E. Lugscheider, C. Barimani, C. Wolff, S. Guerreiro, G. Doepper, Surf. Coat. Technol., 86-87 (1996) 177. https://doi.org/10.1016/S0257-8972(96)03041-1
  7. J. H. Jung, J. H. Yang, H. S. Park, M. A Song, J. I. Jeong, J. Kor. Inst. Surf. Eng., 45 (2012) 104.
  8. D. Yu, C. Wang, X. Cheng, F. Zhang, Appl. Surf. Sci., 255 (2008) 1865. https://doi.org/10.1016/j.apsusc.2008.06.204
  9. I. W. Park, S. R. Choi, J. H. Suh, C. G. Park, K. H. Kim, Thin Solid Films, 447-448 (2004) 443. https://doi.org/10.1016/S0040-6090(03)01122-2
  10. J. S. Kim, G. J. Kim, M. C. Kang, J. W. Kim, K. H. Kim, Surf. Coat. Technol., 193 (2005) 249. https://doi.org/10.1016/j.surfcoat.2004.07.019
  11. D. Philippon, V. Godinho, P.M. Nagy, M.P. Delplancke-Ogletree, A. Fernandez, Wear, 270 (2011) 541. https://doi.org/10.1016/j.wear.2011.01.009
  12. S. Y. Yoon, S. R. Choi, M. H. Lee, K. H. Kim, J. Kor. Inst. Surf. Eng., 36 (2003) 122.
  13. F. Lang, Z. Yu, Surf. Coat. Technol., 145 (2001) 80. https://doi.org/10.1016/S0257-8972(01)01284-1
  14. P. J. Martin, A. Bendavid, J.M. Cairney, M. Hoffman, Surf. Coat. Technol., 200 (2005) 2228. https://doi.org/10.1016/j.surfcoat.2004.06.012
  15. Th. H. De Keijser, J. I. Langford, E. J. Melterneijer, A. B. P. Vogels, J. Appl. Cryst., 15 (1982) 308. https://doi.org/10.1107/S0021889882012035
  16. Y. Y. Chang, S. M. Yang, Thin Solid Films, 518 (2010) S34. https://doi.org/10.1016/j.tsf.2010.03.020

Cited by

  1. Properties of AlTiN Films Deposited by Cathodic Arc Deposition vol.49, pp.3, 2016, https://doi.org/10.5695/JKISE.2016.49.3.307