Browse > Article
http://dx.doi.org/10.5695/JKISE.2014.47.4.174

Mechanical Properties of TiAlSiN films Coated by Hybrid Process  

Song, Min-A (System Solution Research Center, Research Institute of Industrial Science & Technology)
Yang, Ji-Hoon (System Solution Research Center, Research Institute of Industrial Science & Technology)
Jung, Jae-Hun (System Solution Research Center, Research Institute of Industrial Science & Technology)
Kim, Sung-Hwan (System Solution Research Center, Research Institute of Industrial Science & Technology)
Jeong, Jae-In (System Solution Research Center, Research Institute of Industrial Science & Technology)
Publication Information
Journal of the Korean institute of surface engineering / v.47, no.4, 2014 , pp. 174-180 More about this Journal
Abstract
In this study, TiAlSiN coatings have been successfully synthesized on stainless steel and tungsten carbide substrate by a hybrid coating method employing a cathodic arc and a magnetron sputtering source. TiAl and Si target were vaporized with the cathodic arc source and the magnetron sputtering source, respectively. Process gas was the mixture of nitrogen and argon gas. With the increase of Si content, the crystallinity and the grain size of TiAlSiN film was decreased. At the Si content of more than 8 at.%, grain size of TiAlSiN was saturated at around 2 nm. The hardness value of the TiAlSiN film increased with incorporation of Si, and had the maximum value of ~ 3,233 Hv at the Si content of 9.2 at.%. The oxidation resistance of TiAlSiN film was enhanced with the increase of Si content.
Keywords
Magnetron Sputtering; Cathodic Arc Deposition; TiAlSiN Coating; Hybrid Process; Oxidation Resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Lang, Z. Yu, Surf. Coat. Technol., 145 (2001) 80.   DOI   ScienceOn
2 S. Veprek, J. Vac. Sic. Technol. A, 17 (1999) 2401.   DOI
3 J. Musil, Surf. Coat. Technol., 125 (2000) 322.   DOI   ScienceOn
4 J. H. Jung, J. H. Yang, H. S. Park, M. A Song, J. I. Jeong, J. Kor. Inst. Surf. Eng., 45 (2012) 104.
5 D. Yu, C. Wang, X. Cheng, F. Zhang, Appl. Surf. Sci., 255 (2008) 1865.   DOI   ScienceOn
6 I. W. Park, S. R. Choi, J. H. Suh, C. G. Park, K. H. Kim, Thin Solid Films, 447-448 (2004) 443.   DOI   ScienceOn
7 J. S. Kim, G. J. Kim, M. C. Kang, J. W. Kim, K. H. Kim, Surf. Coat. Technol., 193 (2005) 249.   DOI   ScienceOn
8 D. Philippon, V. Godinho, P.M. Nagy, M.P. Delplancke-Ogletree, A. Fernandez, Wear, 270 (2011) 541.   DOI   ScienceOn
9 S. Y. Yoon, S. R. Choi, M. H. Lee, K. H. Kim, J. Kor. Inst. Surf. Eng., 36 (2003) 122.
10 P. J. Martin, A. Bendavid, J.M. Cairney, M. Hoffman, Surf. Coat. Technol., 200 (2005) 2228.   DOI   ScienceOn
11 Y. Y. Chang, S. M. Yang, Thin Solid Films, 518 (2010) S34.   DOI   ScienceOn
12 C. C. Koch, D. G. Morris, K. Lu, A. Inoue, MRS Bul., 24 (1999) 146.
13 A. A. Voevodin, J. S. Zabinski, Thin Solid Films, 370 (2000) 223.   DOI   ScienceOn
14 K. H. Kim, S. R. Choi, S. Y. Yoon, Surf. Coat. Technol., 298 (2002) 243.
15 E. Lugscheider, C. Barimani, C. Wolff, S. Guerreiro, G. Doepper, Surf. Coat. Technol., 86-87 (1996) 177.   DOI   ScienceOn
16 Th. H. De Keijser, J. I. Langford, E. J. Melterneijer, A. B. P. Vogels, J. Appl. Cryst., 15 (1982) 308.   DOI