• 제목/요약/키워드: arabidopsis

검색결과 819건 처리시간 0.026초

Functional Characterization of NtCDPK1 in Tobacco

  • Lee, Sang Sook;Yoon, Gyeong Mee;Rho, Eun Jung;Moon, Eunpyo;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.141-146
    • /
    • 2006
  • We previously showed that NtCDPK1, a tobacco calcium-dependent protein kinase, interacts with and phosphorylates the Rpn3 regulatory subunit of the 26S proteasome, and that both NtCDPK1 and Rpn3 are mainly expressed in rapidly proliferating tissues, including shoot and root meristem. In this study, we examined NtCDPK1 expression in roots using GUS expression in transgenic Arabidopsis plants, and investigated its function in root development by generating transgenic tobacco plants carrying a sense NtCDPK1 transgene. GUS activity was first detected in roots two days after sowing. In later stages, strong GUS expression was detected in the root meristem and elongation zone, as well as the initiation sites and branch points of lateral roots. Transgenic tobacco plants in which NtCDPK1 expression was suppressed were smaller, and their root development was abnormal, with reduced lateral root formation and less elongation. These results suggest that NtCDPK1 plays a role in a signaling pathway regulating root development in tobacco.

Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation

  • Choi, Ji Won;Lim, Jun
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.524-529
    • /
    • 2016
  • Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.

Synaptotagmin 5 Controls SYP132-VAMP721/722 Interaction for Arabidopsis Immunity to Pseudomonas syringae pv tomato DC3000

  • Kim, Soohong;Kim, Hyeran;Park, Keunchun;Cho, Da Jeong;Kim, Mi Kyung;Kwon, Chian;Yun, Hye Sup
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.670-679
    • /
    • 2021
  • Vesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against Pseudomonas syringae pv tomato (Pst) DC3000 by regulating SYP132-VAMP721/722 interactions. Calcium-dependent stimulation of in vitro SYP132-VAMP722 interaction by SYT5 and reduced in vivo SYP132-VAMP721/722 interaction in syt5 plants suggest that SYT5 regulates the interaction between SYP132 and VAMP721/722. We interestingly found that disease resistance to Pst DC3000 bacterium but not to Erysiphe pisi fungus is compromised in syt5 plants. Since SYP132 plays an immune function to bacteria, elevated growth of surface-inoculated Pst DC3000 in VAMP721/722-deficient plants suggests that SYT5 contributes to plant immunity to Pst DC3000 by promoting the SYP132-VAMP721/722 immune secretory pathway.

Overview of CRISPR/Cas9: a chronicle of the CRISPR system and application to ornamental crops

  • Lee, Hyunbae;Subburaj, Saminathan;Tu, Luhua;Lee, Ka-Yeon;Park, Gwangsu;Lee, Geung-Joo
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.903-920
    • /
    • 2020
  • Since its first demonstration as a practical genome editing tool in the early 2010s, the use of clustered regularly interspaced short palindromic repeat (CRISPR) along with the endonuclease Cas9 (CRISPR/Cas9) has become an essential choice for generating targeted mutations. Due to its relative simplicity and cost-effectiveness compared to other molecular scissors, i.e., zinc finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN), the CRISPR/Cas9 system has been shown to have a massive influence on genetic studies regardless of the biological kingdom. Although the system is in the process of being established, numerous protocols have already been released for the system and there have been various topics of CRISPR related papers published each year in ever-increasing manner. Here, we will briefly introduce CRISPR/Cas9 system and discuss the variants of the CRISPR system. Also, their applications to crop improvement will be dealt with mainly ornamental crops among horticultural crops other than Arabidopsis as a model plant. Finally, some issues on the barriers restraining the use of CRISPR system on floricultural crops, the prospect of CRISPR system as a DNA-free genome editing tool with efficient facilitators and finally, the future perspectives on the CRISPR system will be described.

Resistance to Turnip Mosaic Virus in the Family Brassicaceae

  • Palukaitis, Peter;Kim, Su
    • The Plant Pathology Journal
    • /
    • 제37권1호
    • /
    • pp.1-23
    • /
    • 2021
  • Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.

Isolation of Multi-Abiotic Stress Response Genes to Generate Global Warming Defense Forage Crops

  • Ermawati, Netty;Hong, Jong Chan;Son, Daeyoung;Cha, Joon-Yung
    • 한국초지조사료학회지
    • /
    • 제41권4호
    • /
    • pp.242-249
    • /
    • 2021
  • Forage crop management is severely challenged by global warming-induced climate changes representing diverse a/biotic stresses. Thus, screening of valuable genetic resources would be applied to develop stress-tolerant forage crops. We isolated two NAC (NAM, ATAF1, ATAF2, CUC2) transcription factors (ANAC032 and ANAC083) transcriptionally activated by multi-abiotic stresses (salt, drought, and cold stresses) from Arabidopsis by microarray analysis. The NAC family is one of the most prominent transcription factor families in plants and functions in various biological processes. The enhanced expressions of two ANACs by multi-abiotic stresses were validated by quantitative RT-PCR analysis. We also confirmed that both ANACs were localized in the nucleus, suggesting that ANAC032 and ANAC083 act as transcription factors to regulate the expression of downstream target genes. Promoter activities of ANAC032 and ANAC083 through histochemical GUS staining again suggested that various abiotic stresses strongly drive both ANACs expressions. Our data suggest that ANAC032 and ANAC083 would be valuable genetic candidates for breeding multi-abiotic stress-tolerant forage crops via the genetic modification of a single gene.

Identification of WAT1-like genes in Panax ginseng and functional analysis in secondary growth

  • Hong, Jeongeui;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제49권3호
    • /
    • pp.171-177
    • /
    • 2022
  • The precise homeostatic regulation of local auxin accumulation in xylem precursors of cambium stem cell tissues is one of the most important mechanisms for plant vascular patterning and radial secondary growth. Walls are thin (WAT1), a novel intracellular auxin transporter, contributes directly to the auxin accumulation maxima in xylem precursors. According to recent research, the auxin signaling activated pathway-related gene network was significantly enriched during the secondary growth of Panax ginseng storage roots. These imply that during P. ginseng root secondary growth, specific signaling mechanisms for local auxin maxima in the vascular cambial cells are probably triggered. This study identified four WAT1-like genes, PgWAT1-1/-2 and PgWAT2-1/-2, in the P. ginseng genome. Their expression levels were greatly increased in nitratetreated storage roots stimulated for secondary root growth. PgWAT1-1 and PgWAT2-1 were similar to WAT1 from Arabidopsis and tomato plants in terms of their subcellular localization at a tonoplast and predicted transmembrane topology. We discovered that overexpression of PgWAT1-1 and PgWAT2-1 was sufficient to compensate for the secondary growth defects observed in slwat1-copi loss of function tomato mutants. This critical information from the PgWAT1-1 and PgWAT2-1 genes can potentially be used in future P. ginseng genetic engineering and breeding for increased crop yield.

MtMKK5 inhibits nitrogen-fixing nodule development by enhancing defense signaling

  • Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • 제49권4호
    • /
    • pp.300-306
    • /
    • 2022
  • The mitogen-activated protein kinase (MAPK) signaling cascade is essential for a wide range of cellular responses in plants, including defense responses, responses to abiotic stress, hormone signaling, and developmental processes. Recent investigations have shown that the stress, ethylene, and MAPK signaling pathways negatively affect the formation of nitrogen-fixing nodules by directly modulating the symbiotic signaling components. However, the molecular mechanisms underlying the defense responses mediated by MAPK signaling in the organogenesis of nitrogen-fixing nodules remain unclear. In the present study, I demonstrate that the Medicago truncatula mitogen-activated protein kinase kinase 5 (MtMKK5)-Medicago truncatula mitogen-activated protein kinase 3/6 (MtMPK3/6) signaling module, expressed specifically in the symbiotic nodules, promotes defense signaling, but not ethylene signaling pathways, thereby inhibiting nodule development in M. truncatula. U0126 treatment resulted in increased cell division in the nodule meristem zone due to the inhibition of MAPK signaling. The phosphorylated TEY motif in the activation domain of MtMPK3/6 was the target domain associated with specific interactions with MtMKK5. I have confirmed the physical interactions between M. truncatula nodule inception (MtNIN) and MtMPK3/6. In the presence of high expression levels of the defense-related genes FRK1 and WRKY29, MtMKK5a overexpression significantly enhanced the defense responses of Arabidopsis against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Overall, my data show that the negative regulation of symbiotic nitrogen-fixing nodule organogenesis by defense signaling pathways is mediated by the MtMKK5-MtMPK3/6 module.

A genetic approach to comprehend the complex and dynamic event of floral development: a review

  • Jatindra Nath Mohanty;Swayamprabha Sahoo;Puspanjali Mishra
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.40.1-40.8
    • /
    • 2022
  • The concepts of phylogeny and floral genetics play a crucial role in understanding the origin and diversification of flowers in angiosperms. Angiosperms evolved a great diversity of ways to display their flowers for reproductive success with variations in floral color, size, shape, scent, arrangements, and flowering time. The various innovations in floral forms and the aggregation of flowers into different kinds of inflorescences have driven new ecological adaptations, speciation, and angiosperm diversification. Evolutionary developmental biology seeks to uncover the developmental and genetic basis underlying morphological diversification. Advances in the developmental genetics of floral display have provided a foundation for insights into the genetic basis of floral and inflorescence evolution. A number of regulatory genes controlling floral and inflorescence development have been identified in model plants such as Arabidopsis thaliana and Antirrhinum majus using forward genetics, and conserved functions of many of these genes across diverse non-model species have been revealed by reverse genetics. Transcription factors are vital elements in systems that play crucial roles in linked gene expression in the evolution and development of flowers. Therefore, we review the sex-linked genes, mostly transcription factors, associated with the complex and dynamic event of floral development and briefly discuss the sex-linked genes that have been characterized through next-generation sequencing.