DOI QR코드

DOI QR Code

Resistance to Turnip Mosaic Virus in the Family Brassicaceae

  • Palukaitis, Peter (Department of Horticultural Sciences, Seoul Women's University) ;
  • Kim, Su (Institute of Plant Analysis Technology Development, The Saeron Co.)
  • Received : 2020.09.15
  • Accepted : 2020.11.30
  • Published : 2021.02.01

Abstract

Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.

Keywords

References

  1. Aman, R., Ali, Z., Butt, H., Mahas, A., Aljedaani, F., Khan, M. Z., Ding, S. and Mahfouz, M. 2018a. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 19:1. https://doi.org/10.1186/s13059-017-1381-1
  2. Aman, R., Mahas, A., Butt, H., Ali, Z., Aljedaani, F. and Mahfouz, M. 2018b. Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis. Viruses 10:732. https://doi.org/10.3390/v10120732
  3. Browning, K. S. 2004. Plant translation initiation factors: it is not easy to be green. Biochem. Soc. Trans. 32:589-591. https://doi.org/10.1042/BST0320589
  4. Chen, L., Cheng, X., Cai, J., Zhan, L., Wu, X., Liu, Q. and Wu, X. 2016. Multiple virus resistance using artificial trans-acting siRNAs. J. Virol. Methods 228:16-20. https://doi.org/10.1016/j.jviromet.2015.11.004
  5. Cheng, D. 2013. Cloning of turnip mosaic virus resistance related genes and development of trap marker in radish (Raphanus sativus L.). Ph.D. thesis. Nanjing Agricultural University, Nanjing, China.
  6. Cheng, D., Zhang, F., Liu, L., Xu, L., Chen, Y., Wang, X., Limera, C., Yu, R. and Gong, Y. 2013. TRAP markers generated with resistance gene analog sequences and their application to genetic diversity analysis of radish germplasm. Sci. Hortic. 161:153-159. https://doi.org/10.1016/j.scienta.2013.07.004
  7. Chung, B. Y.-W., Miller, W. A., Atkins, J. F. and Firth, A. E. 2008. An overlapping essential gene in the Potyviridae. Proc. Natl. Acad. Sci. U. S. A. 105:5897-5902. https://doi.org/10.1073/pnas.0800468105
  8. Chung, H., Jeong, Y.-M., Mun, J.-H., Lee, S.-S., Chung, W.-H. and Yu, H.-J. 2014. Construction of a genetic map based on high-throughput SNP genotyping and genetic mapping of a TuMV resistance locus in Brassica rapa. Mol. Genet. Genomics 289:149-160. https://doi.org/10.1007/s00438-013-0798-9
  9. Cosson, P., Sofer, I., Le, Q. H., Leger, V., Schurdi-Levraud, V., Whitham, S. A., Yamamoto, M. L., Gopalan, S., Le Gall, O., Candresse, T., Carrington, J. C. and Rivers, F. 2010. RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol. 154:222-232. https://doi.org/10.1104/pp.110.155754
  10. Doucet, R., Shuttuck, V. I. and Stobbs, L. W. 1990. Rutabaga germplasm TuMV-R possessing resistance to turnip mosaic virus. HortScience 25:583-584. https://doi.org/10.21273/HORTSCI.25.5.583
  11. Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S. and Robaglia, C. 2002. The Arabidopsis eukaryotic initiation factor (iso)4E is depensable for plant growth but required for susceptibility to potyviruses. Plant J. 32:927-934. https://doi.org/10.1046/j.1365-313X.2002.01481.x
  12. Edwardson, J. R. and Christie, R. G. 1986. Turnip mosaic virus. In: Viruses infecting forage legumes, Vol. II, ed. by J. R. Edwardson, pp. 438-453. University of Florida, Gainesville, FL, USA.
  13. Edwardson, J. R. and Christie, R. G. 1991. The potyvirus group. Florida Agricultural Experiment Station Monograph 16, Vol. I-IV. University of Florida, Gainesville, Florida, USA. 1244 pp.
  14. Farzadfar, S. and Pourrahim, R. 2014. Characterization of Turnip mosaic virus from the Asian-BR population in Iran. J. Phytopathol. 162:824-828. https://doi.org/10.1111/jph.12243
  15. Farzadfar, S., Tomitaka, Y., Ikematsu, M., Golnaraghi, A. R., Pourrahim, R. and Ohshima, K. 2009. Molecular characterisation of Turnip mosaic virus isolates from Brassicaceae weeds. Eur. J. Plant Pathol. 124:45-55. https://doi.org/10.1007/s10658-008-9390-2
  16. Fjellstrom, R. G. and Williams, P. H. 1997. Fusarium yellows and turnip mosaic virus resistance in Brassica rapa and B. juncea. HortScience 32:927-930. https://doi.org/10.21273/hortsci.32.5.927
  17. Fujiwara, A., Inukai, T., Kim, B. M. and Masuta, C. 2011. Combinations of a host resistance gene and the CI gene of turnip mosaic virus differentially regulate symptom expression in Brassica rapa cultivars. Arch. Virol. 156:1575-1581. https://doi.org/10.1007/s00705-011-1036-6
  18. Gallois, J.-L., Charron, C., Sanchez, F., Pagny, G., Houvenaghel, M.-C., Moretti, A., Ponz, F., Revers, F., Caranta, C. and German-Retana, S. 2010. Single amino acid changes in the turnip mosaic viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana eIF(iso)4E and eIF(iso)4G. J. Gen. Virol. 91:288-293. https://doi.org/10.1099/vir.0.015321-0
  19. Gong, J., Ju, H.-K., Kim, I.-H., Seo, E.-Y., Cho, I.-S., Hu, W.-X., Han, J.-Y., Kim, J.-K., Choi, S. R., Lim, Y. P., Hammond, J. and Lim, H.-S. 2019. Sequence variations among 17 new radish isolates of Turnip mosaic virus showing differential pathogenicity and infectivity in Nicotiana benthamiana, Brassica rapa, and Raphanus sativus. Phytopathology 109:904-910. https://doi.org/10.1094/PHYTO-12-17-0401-R
  20. Green, S. K. and Deng, T. C. 1985. Turnip mosaic virus strains in cruciferous hosts Taiwan. Plant Dis. 69:28-31. https://doi.org/10.1094/PD-69-28
  21. Guerret, M. G. L., Nyalugwe, E. P., Maina, S., Barbetti, M. J., van Leur, J. A. G. and Jones, R. A. C. 2017. Biological and molecular properties of a Turnip mosaic virus (TuMV) strain that breaks TuMV resistances in Brassica napus. Plant Dis. 101:674-683. https://doi.org/10.1094/PDIS-08-16-1129-RE
  22. Hagiwara-Komoda, Y., Choi, S. H., Sato, M., Atsumi, G., Abe J., Fukuda, J., Honjo, M. N., Nagano, A. J., Komoda, K., Nakahara, K. S., Uyeda, I. and Naito, S. 2016. Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Sci. Rep. 6:21411. https://doi.org/10.1038/srep21411
  23. He, H., Yang, X., Xun, H., Lou, X., Li, S., Zhang, Z., Jiang, L., Dong, Y., Wang, S., Pang, J. and Liu, B. 2017. Over-expression of GmSN1 enhances virus resistance in Arabidopsis and soybean. Plant Cell Rep. 36:1441-1455. https://doi.org/10.1007/s00299-017-2167-3
  24. Hu, W.-X., Seo., E.-Y., Cho, I.-S., Kim, J.-K., Ju, H.-K., Kim, I.-H., Choi, G.-W., Kim, B., Ahn, C.-H., Domier, L. L., Oh, S.-K., Hammond, J. and Lim, H.-S. 2019. Amino acid differences in the N-terminal half of the polyproteins of Chinese turnip mosaic virus isolates affect symptom expression in Nicotiana benthamiana and radish. Arch. Virol. 164:1683-1689. https://doi.org/10.1007/s00705-019-04242-9
  25. Hughes, S. L., Hunter, P. J., Sharpe, A. G., Kearsey, M. J., Lydiate, D. J. and Walsh, J. A. 2003. Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor. Appl. Genet. 107:1169-1173. https://doi.org/10.1007/s00122-003-1363-4
  26. Ishibashi, K., Kezuka, Y., Kobayashi, C., Kato, M, Inoue, T., Nonaka, T., Ishikawa, M., Matsumura, H. and Katoh, E. 2014. Structural basis for the recognition-evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. Proc. Natl. Acad. Sci. U. S. A. 111:E3486-E3495. https://doi.org/10.1073/pnas.1407888111
  27. Jan, F.-J., Fagoaga, C., Pang, S.-Z. and Gonsalves, D. 2000. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81:2103-2109. https://doi.org/10.1099/0022-1317-81-8-2103
  28. Jan, F.-J., Pang, S.-Z., Fagoaga, C. and Gonsalves, D. 1999. Turnip mosaic potyvirus resistance in Nicotiana benthamiana derived by post-transcriptional gene silencing. Transgenic Res. 8:203-213. https://doi.org/10.1023/A:1008915007271
  29. Jenner, C. E., Nellist, C. F., Barker, G. C. and Walsh, J. A. 2010. Turnip mosaic virus (TuMV) is able to use alleles of both eIF4E and eIF(iso)4E from multiple loci of the diploid Brassica rapa. Mol. Plant-Microbe Interact. 23:1498-1505. https://doi.org/10.1094/MPMI-05-10-0104
  30. Jenner, C. E., Sanchez, F., Nettleship, S. B., Foster, G. D., Ponz, F. and Walsh, J. A. 2000. The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the brassica resistance gene TuRB01. Mol. Plant-Microbe Interact. 13:1102-1108. https://doi.org/10.1094/MPMI.2000.13.10.1102
  31. Jenner, C. E., Tomimura, K., Ohshima, K., Hughes, S. L. and Walsh, J. A. 2002. Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50-59. https://doi.org/10.1006/viro.2002.1519
  32. Jenner, C. E. and Walsh, J. A. 1996. Pathogenic variation in turnip mosaic virus with special reference to European isolates. Plant Pathol. 45:848-856. https://doi.org/10.1111/j.1365-3059.1996.tb02895.x
  33. Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F. and Walsh, J. A. 2003. The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol. Plant-Microbe Interact. 16:777-784. https://doi.org/10.1094/MPMI.2003.16.9.777
  34. Jennings, M. D. and Pavitt, G. D. 2014. A new function and complexity for protein translation initiation factor eIF2B. Cell Cycle 13:2660-2665. https://doi.org/10.4161/15384101.2014.948797
  35. Jin, M., Lee, S.-S., Ke, L., Kim, J. S., Seo, M.-S., Sohn, S.-H., Park, B.-S. and Bonnema, G. 2014. Identification and mapping of a novel dominant resistant gene, TuRB07 to Turnip mosaic virus in Brassica rapa. Theor. Appl. Genet. 127:509-519. https://doi.org/10.1007/s00122-013-2237-z
  36. Kaneko, Y., Natsuaki, T., Bang, S. W. and Matsuzawa, Y. 1996. Identification and evaluation of turnip mosaic virus (TuMV) resistance gene in kale monosomic addition lines of radish. Jpn. J. Breed. 46:117-124. https://doi.org/10.1270/jsbbs1951.46.117
  37. Kaneko, Y.-H., Inukai, T., Suehiro, N., Natsuaki, T. and Masuta, C. 2004. Fine genetic mapping of the TuNI locus causing systemic veinal necrosis by turnip mosaic virus infection in Arabidopsis thaliana. Theor. Appl. Genet. 110:33-40. https://doi.org/10.1007/s00122-004-1824-4
  38. Kehoe, M. A., Coutts, B. A. and Jones, R. A. C. 2010. Resistance phenotypes in diverse accessions, breeding lines, and cultivars of three mustard species inoculated with Turnip mosaic virus. Plant Dis. 94:1290-1298. https://doi.org/10.1094/PDIS-12-09-0841
  39. Kim, B., Masuta, C., Matsuura, H., Takahashi, H. and Inukai, T. 2008. Veinal necrosis induced by Turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. Mol. Plant-Microbe Interact. 21:260-268. https://doi.org/10.1094/MPMI-21-2-0260
  40. Kim, B. M., Suehiro, N., Natsuaki, T., Inukai., T. and Masuta, C. 2010. The P3 protein of Turnip mosaic virus can alone induce hypersensitive response-like cell death in Arabidopsis thaliana carrying TuNI. Mol. Plant-Microbe Interact. 23:144-152. https://doi.org/10.1094/MPMI-23-2-0144
  41. Kim, I.-H., Ju, H.-K., Gong, J., Han, J.-Y., Seo, E.-Y., Cho, S.-W., Hu, W.-X., Choi, S. R., Lim, Y. P., Domier, L. L., Hammond, J. and Lim, H.-S. 2019. A turnip mosaic virus determinant of systemic necrosis in Nicotiana benthamiana and a novel resistance-breaking determinant in Chinese cabbage identified from chimeric infectious clones. Phytopathology 109:1638-1647. https://doi.org/10.1094/PHYTO-08-18-0323-R
  42. Kim, J., Kang, W.-H., Hwang, J., Yang, H.-B., Kim, D., Oh, C.-S. and Kang, B.-C. 2014. Transgenic Brassica rapa plants overexpressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance. Mol. Plant Pathol. 15:615-626. https://doi.org/10.1111/mpp.12120
  43. Kim, J., Kang, W.-H., Yang, H.-B., Park, S., Jang, C.-S., Yu, H.-J. and Kang, B.-C. 2013. Identification of a broad-spectrum recessive gene in Brassica rapa and molecular analysis of the eIF4E gene family to develop molecular markers. Mol. Breed. 32:385-398. https://doi.org/10.1007/s11032-013-9878-0
  44. Kitashiba, H., Li, F., Hirakawa, H., Kawanabe, T., Zou, Z., Hasegawa, Y., Tonosaki, K., Shirasawa, S., Fukushima, A., Yokoi, S., Takahata, Y., Kakizaki, T., Ishida, M., Okamoto, S., Sakamoto, K., Shirasawa, K., Tabata, S. and Mishio, T. 2014. Draft sequence of the radish (Raphanus sativus L.) genome. DNA Res. 21:481-490. https://doi.org/10.1093/dnares/dsu014
  45. Korkmaz, S., Cevik, B., Karanfil, A., Onder, S. and Ohshima, K. 2020. Phylogenetic relationships and genetic structure of populations of turnip mosaic virus in Turkey. Eur. J. Plant Pathol. 156:559-569. https://doi.org/10.1007/s10658-019-01905-w
  46. Korkmaz, S., Tomitaka, Y., Onder, S. and Ohshima, K. 2008. Occurrence and molecular characterization of Turkish isolates of Turnip mosaic virus. Plant Pathol. 57:1155-1162. https://doi.org/10.1111/j.1365-3059.2008.01902.x
  47. Lafforgue, G., Martinez, F., Niu, Q.-W., Chua, N.-H., Daros, J.-A. and Elena, S. F. 2013. Improving the effectiveness of artificial microRNA (amiR)-mediated resistance against Turnip mosaic virus by combining two amiRs or by targeting highly conserved viral genomic regions. J. Virol. 87:8254-8256. https://doi.org/10.1128/JVI.00914-13
  48. Lafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., Sole, R.V., Chua, N.-H., Daros, J.-A. and Elena, S. F. 2011. Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. J. Virol. 85:9686-9695. https://doi.org/10.1128/JVI.05326-11
  49. Lam, Y.-H., Wong, Y.-S., Wang, B., Wong, R. N.-S., Yeung, H.-W. and Shaw, P.-C. 1996. Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Sci. 114:111-117. https://doi.org/10.1016/0168-9452(95)04310-1
  50. Lee, G., Shim, H.-K., Kwon, M.-H., Son, S.-H., Kim, K.-Y., Park, E.-Y., Yang, J.-K., Lee, T.-K., Auh, C.-K., Kim. D., Kim, Y.-S. and Lee, S. 2013. RNA virus accumulation is inhibited by ribonuclease activity of 3D8 scFv in transgenic Nicotiana tabacum. Plant Cell Tissue Organ Cult. 115:189-197. https://doi.org/10.1007/s11240-013-0351-x
  51. Lehmann, P., Jenner, C. E., Kozubek, E., Greenland, A. J. and Walsh, J. A. 2003. Coat protein-mediated resistance to Turnip mosaic virus in oilseed rape (Brassica napus). Mol. Breed. 11:83-94. https://doi.org/10.1023/A:1022410823525
  52. Lehmann, P., Petrzik, K., Jenner, C., Greenland, A., Spak, J., Kozubek, E. and Walsh, J. A. 1997. Nucleotide and amino acid variation in the coat protein coding region of turnip mosaic virus isolates and possible involvement in the interaction with the brassica resistance gene TuRB01. Physiol. Mol. Plant Pathol. 51:195-208. https://doi.org/10.1006/pmpp.1997.0116
  53. Lellis, A. D., Kasschau, K. D., Whitham, S. A. and Carrington, J. C. 2002. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role of eIF(iso)4E during potyvirus infection. Curr. Biol. 12:1046-1051. https://doi.org/10.1016/S0960-9822(02)00898-9
  54. Li, G., Lv, H., Zhang, S., Zhang, S., Li, F., Zhang H., Qian, W., Fang, Z. and Sun, R. 2019a. TuMV management for brassica crops through host resistance: retrospect and prospects. Plant Pathol. 68:1035-1044. https://doi.org/10.1111/ppa.13016
  55. Li, G.-L., Qian, W., Zhang, S.-J., Zhang, S.-F., Li, F., Zhang, H., Wu, J., Wang, X.-W. and Sun, R.-F. 2016a. Development of gene-based markers for the Turnip mosaic virus resistance gene retr02 in Brassica rapa. Plant Breed. 135:466-470. https://doi.org/10.1111/pbr.12372
  56. Li, H. S. 2009. Genetic dissection of resistance to turnip mosaic virus and black rot in radish (Raphanus sativus L.). Ph.D. thesis. Chinese Academy of Agricultural Sciences, Beijing, China.
  57. Li, Q., Zhang, Z., Liu, S., Lu, J. and Zhao, Z. 2012. Inheritance analysis of Turnip mosaic virus resistance in Chinese cabbage. Acta Agric. Boreal. Sin. 27:135-139 (in Chinese). https://doi.org/10.3969/j.issn.1000-7091.2012.04.025
  58. Li, Q., Zhang, X., Zheng, Q., Zhang, Z., Liu, S., Pei, Y., Wang, S., Liu, X., Xu, W., Fu, W., Zhao, Z. and Song, X. 2015. Identification and mapping of a novel Turnip mosaic virus resistance gene TuRBCS01 in Chinese cabbage (Brassica rapa L.). Plant Breed. 134:221-225. https://doi.org/10.1111/pbr.12239
  59. Li, S., Zhao, J., Zhai, Y., Yuan, Q., Zhang, H., Wu, X., Lu, Y., Peng, J., Sun, Z., Lin, L., Zheng, H., Chen, J. and Yan, F. 2019b. The hypersensitive induced reaction 3 (HIR3) gene contributes to plant basal resistance via an EDS1 and salicylic acid-dependent pathway. Plant J. 98:783-797. https://doi.org/10.1111/tpj.14271
  60. Li, W. H., Yu, G., Lei, Y., Chong, S. C. and Shu, P. Q. 2014. Coat protein-mediated resistance to Turnip mosaic virus in Chinese cabbage (Brassica rapa ssp. pekinensis) by the pollen-tube method. Int. J. Agric. Biol. 16:6.
  61. Li, Y., Xiong, R., Bernards, M. and Wang, A. 2016b. Recruitment of Arabidopsis RNA helicase AtRH9 to the viral replication complex by viral replicase to promote Turnip mosaic virus replication. Sci. Rep. 6:30297. https://doi.org/10.1038/srep30297
  62. Lin, S.-S., Wu, H.-W., Elena, S. F., Chen, K.-C., Niu, Q.-W., Yeh, S.-D., Chen, C.-C. and Chua, N.-H. 2009. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog. 5:e1000312. https://doi.org/10.1371/journal.ppat.1000312
  63. Liu, J., Kim, B. M., Kaneko, Y.-H., Inukai, T. and Masuta, C. 2015. Identification of the TuNI gene causing systemic necrosis in Arabidopsis ecotype Ler infected with Turnip mosaic virus and characterization of its expression. J. Gen. Plant Pathol. 81:180-191. https://doi.org/10.1007/s10327-015-0583-1
  64. Liu, X., Lu, W., Liu, Y. and Li, J. 1990. A study of TuMV differentiation on cruciferous vegetables from ten provinces in China: a new host differentiator screening and strain classification. Chin. Sci. Bull. 35:1734-1739. https://doi.org/10.1360/csb1990-35-22-1734
  65. Liu, X. P., Lu, W. C., Liu, Y. K., Wei, S. Q., Xu, J. B., Liu, J. B., Liu, Z. R., Zhang, H. J., Li, J. L., Ke, G. L., Yao, W. Y., Cai, Y. S., Wu, F. Y., Cao, S. C., Li, Y. H., Xie, S. D., Lin, B. X. and Zhang, C. L. 1996. Occurrence and strain differentiation of turnip mosaic potyvirus and sources of resistance in Chinese cabbage in China. Acta Hortic. 407:431-440. https://doi.org/10.17660/actahortic.1996.407.55
  66. Lopez-Gonzalez, S., Aragones, V., Daros, J.-A., Sanchez, F. and Ponz, F. 2017. An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain. Eur. J. Plant Pathol. 148:207-211. https://doi.org/10.1007/s10658-016-1057-9
  67. Lv, S., Z., C., Tang, J., Li, Y., Wang, Z., Jiang, D. and Hou, X. 2015. Genome-wide analysis and identification of TIR-NBS-LRR genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveal expression patterns to TuMV infection. Physiol. Mol. Plant Pathol. 90:89-97. https://doi.org/10.1016/j.pmpp.2015.04.001
  68. Lydiate, D. J., Rusholme Pilcher, R. L., Higgins, E. E. and Walsh, J. A. 2014. Genetic control of immunity to Turnip mosaic virus (TuMV) pathotype 1 in Brassica rapa (Chinese cabbage). Genome 57:419-425. https://doi.org/10.1139/gen-2014-0070
  69. Ma, J., Hou, X., Xiao, D., Qi, L., Wang, F., Sun, F. and Wang, Q. 2010. Cloning and characterization of the BcTuR3 gene related to resistance to turnip mosaic virus (TuMV) from non-heading Chinese cabbage. Plant Mol. Biol. Rep. 28:588-596. https://doi.org/10.1007/s11105-010-0183-3
  70. Marcotrigiano, J., Gingras, A.-C., Sonenberg, N. and Burley, S. K. 1999. Cap-independent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell 3:707-716. https://doi.org/10.1016/S1097-2765(01)80003-4
  71. Martinez, F., Elena, S. F. and Daros, J.-A. 2013. Fate of artificial microRNA-mediated resistance to plant viruses in mixed infections. Phytopathology 103:870-876. https://doi.org/10.1094/PHYTO-09-12-0233-R
  72. Martin Martin, A., Cabrera y Poch, H. L., Martinez-Herrera, D. and Ponz, F. 1999. Resistance to turnip mosaic potyvirus in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 12:1016-1021. https://doi.org/10.1094/MPMI.1999.12.11.1016
  73. Montesclaros, L., Nicol, N., Ubalijoro, E., Leclerc-Potvin, C., Ganivet, L., Laliberte, J.-F. and Fortin, M. G. 1997. Response to potyvirus infection and genetic mapping of resistance loci to potyvirus infection in Lactuca. Theor. Appl. Genet. 94:941-946. https://doi.org/10.1007/s001220050499
  74. Naughton, F. B., Kalli, A. C. and Sansom, M. S. P. 2018. Modes of interaction of pleckstrin homology domains with membranes: toward a computational biochemistry of membrane recognition. J. Mol. Biol. 430:372-388. https://doi.org/10.1016/j.jmb.2017.12.011
  75. Nellist, C. F., Qian, W., Jenner, C. E., Moore, J. D., Zhang, S., Wang, X., Briggs, W. H., Barker, G. C., Sun, R. and Walsh, J. A. 2014. Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum resistance. Plant J. 77:261-268. https://doi.org/10.1111/tpj.12389
  76. Nguyen, H. D., Tomitaka, Y., Ho, S. Y. W., Duchêne, S., Vetten, H.-J., Lesemann, D., Walsh, J. A., Gibbs, A. J. and Ohshima, K. 2013a. Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLoS ONE 8:e55336. https://doi.org/10.1371/journal.pone.0055336
  77. Nguyen, H. D., Tran, H. T. N. and Ohshima, K. 2013b. Genetic variation of the Turnip mosaic virus population of Vietnam: a case study of founder, regional and local influences. Virus Res. 171:138-149. https://doi.org/10.1016/j.virusres.2012.11.008
  78. Nicaise, V., Gallois, J.-L., Chafiai, F., Allen, L. M., SchurdiLevaud, V., Browning, K. S., Candresse, T., Caranta, C., Le Gall, O. and German-Retana, S. 2007. Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett. 581:1041-1046. https://doi.org/10.1016/j.febslet.2007.02.007
  79. Nicolas, O. and Laliberte, J.-F. 1992. The complete nucleotide sequence of turnip mosaic potyvirus RNA. J. Gen. Virol. 73:2785-2793. https://doi.org/10.1099/0022-1317-73-11-2785
  80. Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D. and Chua, N.-H. 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24:1420-1428. https://doi.org/10.1038/nbt1255
  81. Nomura, K., Ohshima, K., Anai, T., Uekusa, H. and Kita, N. 2004. RNA silencing of the introduced coat protein gene of Turnip mosaic virus confers broad-spectrum resistance in transgenic Arabidopsis. Phytopathology 94:730-736. https://doi.org/10.1094/PHYTO.2004.94.7.730
  82. Nyalugwe, E. P., Barbetti, M. J. and Jones, R. A. C. 2014. Preliminary studies on resistance phenotypes to Turnip mosaic virus in Brassica napus and B. carinata from different continents and effects of temperature on their expression. Eur. J. Plant Pathol. 139:687-706. https://doi.org/10.1007/s10658-014-0423-8
  83. Nyalugwe, E. P., Barbetti, M. J. and Jones, R. A. C. 2015a. Studies on resistance phenotypes to Turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. Eur. J. Plant Pathol. 141:647-666. https://doi.org/10.1007/s10658-014-0568-5
  84. Nyalugwe, E. P., Jones, R. A. C., Barbetti, M. J. and Kehoe, M. A. 2015b. Biological and molecular variation amongst Australian Turnip mosaic virus isolates. Plant Pathol. 64:1215-1223. https://doi.org/10.1111/ppa.12348
  85. Nyalugwe, E. P., Barbetti, M. J. and Jones, R. A. C. 2016. Strain specificities on Turnip mosaic virus resistance gene TuRBJU01 in Brassica juncea. Eur. J. Plant Pathol. 145:209-213. https://doi.org/10.1007/s10658-015-0816-3
  86. Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamota, T., Tomimura, K., Tan, Z., Sano, T., Azuhata, F., Walsh, J. A., Fletcher, J., Chen, J., Gera, A. and Gibbs, A. 2002. Molecular evolution of Turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J. Gen. Virol. 83:1511-1521. https://doi.org/10.1099/0022-1317-83-6-1511
  87. Olspert, A., Chung, B. Y.-W., Atkins, J. F., Carr, J. P. and Firth, A. E. 2015. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep. 16:995-1004. https://doi.org/10.15252/embr.201540509
  88. Park, S.-H., Li, F., Renaud, J., Shen, W., Li, Y., Guo, L., Cui, H., Sumarah, M. and Wang, A. 2017. NbEXPA1, an α-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. Plant J. 92:846-861. https://doi.org/10.1111/tpj.13723
  89. Parmar, N., Thakur, A. K., Kumar, P., Thakur, P. D. and Bhardwaj, S. V. 2017. Molecular characterization of Turnip mosaic potyvirus (TuMV)-infecting radish (Raphanus sativus L.) crop in India. 3 Biotech 7:382.
  90. Pink, D. A. C., Sutherland, R. A. and Walkey, D. G. A. 1986. Genetic analysis of resistance in Brussels sprout to cauliflower mosaic and turnip mosaic viruses. Ann. Appl. Biol. 109:199-208. https://doi.org/10.1111/j.1744-7348.1986.tb03200.x
  91. Poque, S., Wu, H.-W., Huang, C.-H., Cheng, H.-W., Hu, W.-C., Yang, J.-Y., Wang, D. and Yeh, S.-D. 2018. Potyviral genesilencing suppressor HCPro interacts with salicylic acid (SA)-binding protein 3 to weaken SA-mediated defense responses. Mol. Plant-Microbe Interact. 31:86-100. https://doi.org/10.1094/MPMI-06-17-0128-FI
  92. Pound, G. S. 1948. Horseradish mosaic. J. Agric. Res. 77:97-114.
  93. Pound, G. S. and Walker, J. C. 1945. Differentiation of certain crucifer viruses by the use of temperature and host immunity reactions. J. Agric. Res. 71:255-278.
  94. Provvidenti, R. 1980. Evaluation of Chinese cabbage cultivars from Japan and the People's Republic of China for resistance to turnip mosaic virus and cauliflower mosaic virus. J. Am. Soc. Hortic. Sci. 105:571-573. https://doi.org/10.21273/JASHS.105.4.571
  95. Pyott, D. E., Sheehan, E. and Molnar, A. 2016. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17:1276-1288. https://doi.org/10.1111/mpp.12417
  96. Qian, W., Zhang, S., Zhang, S., Li, F., Zhang, H., Wu, J., Wang, X., Walsh, J. A. and Sun, R. 2013. Mapping and candidate-gene screening of the novel Turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). Theor. Appl. Genet. 126:179-188. https://doi.org/10.1007/s00122-012-1972-x
  97. Revers, F. and Garcia, J. A. 2015. Molecular biology of potyviruses. Adv. Virus Res. 92:101-199. https://doi.org/10.1016/bs.aivir.2014.11.006
  98. Robbins, M. A., Witsenboer, H., Michelmore, R. W., Laliberte, J.-F. and Fortin, M. G. 1994. Genetic mapping of turnip mosaic virus resistance in Lactuca sativa. Theor. Appl. Genet. 89:583-589. https://doi.org/10.1007/bf00222452
  99. Rodamilans, B., Valli, A., Mingot, A., San Leon, D., Baulcombe, D., Lopez-Moya, J. J. and Garcia, J. A. 2015. RNA polymerase slippage as a mechanism for the production of frameshift gene products in plants viruses of the Potyviridae family. J. Virol. 89:6965-6967. https://doi.org/10.1128/JVI.00337-15
  100. Rubio, B., Cosson, P., Caballero, M., Revers, F., Bergelson, J., Roux, F. and Schurdi-Levraud, V. 2019. Genome-wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (TuMV) interactions in the field. New Phytol. 221:2026-2038. https://doi.org/10.1111/nph.15507
  101. Rusholme, R. L., Higgins, E. E., Walsh, J. A. and Lydiate, D. J. 2007. Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J. Gen. Virol. 88:3177-3186. https://doi.org/10.1099/vir.0.83194-0
  102. Sako, N. 1981. Virus disease of Chinese cabbage in Japan. In: Chinese cabbage. Proceedings of the First International Symposium, eds. by N. S. Talekar and T. D. Griggs, pp. 129-141. AVRDC, Shanhau, Tawain.
  103. Sanchez, F., Wang, X., Jenner, C. E., Walsh, J. A. and Ponz, F. 2003. Strains of Turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Res. 94:33-43. https://doi.org/10.1016/S0168-1702(03)00122-9
  104. Sardaru, P., Sinausia, L., Lopez-Gonzalez, S., Zindovic, J., Sanchez, F. and Ponz, F. 2018. The apparent non-host resistance of Ethiopian mustard to a radish-infecting strain of Turnip mosaic virus is largely determined by the C-terminal region of the P3 viral protein. Mol. Plant Pathol. 19:1984-1994. https://doi.org/10.1111/mpp.12674
  105. Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. 2005. Selective involvement of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579:1167-1171. https://doi.org/10.1016/j.febslet.2004.12.086
  106. Sevik, M. A. and Deligoz, I. 2016. The reaction of cabbage (Brassica oleracea L.) breeding lines against Turnip mosaic virus. Acta Sci. Pol. Hortorum Cultus 15:111-119.
  107. Shattuck, V. I. 1992. UG1 turnip germplasm possessing resistance to turnip mosaic virus. HortScience 27:938-939. https://doi.org/10.21273/HORTSCI.27.8.938
  108. Shattuck, V. I. and Stobbs, L. W. 1987. Evaluation of rutabaga cultivars for turnip mosaic virus resistance and inheritance of resistance. HortScience 22:935-937.
  109. Shopan, J., Mou, H., Zhang, L., Zhang, C., Ma, W., Walsh, J. A., Hu, Z., Yang, J. and Zhang, M. 2017. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene. Plant J. 90:929-940. https://doi.org/10.1111/tpj.13519
  110. Shopan, J., Liu, C., Hu, Z., Zhang, M. and Yang, J. 2020a. Identification of eukaryotic initiation factors and the temperature-dependent nature of Turnip mosaic virus epidemics in allopolyploid Brassica juncea. 3 Biotech 10:75. https://doi.org/10.1007/s13205-020-2058-0
  111. Shopan, J., Lv, X., Hu, Z., Zhang, M. and Yang, J. 2020b. Eukaryotic translation initiation factors shape RNA viruses resistance in plants. Hortic. Plant J. 6:81-88. https://doi.org/10.1016/j.hpj.2020.03.001
  112. Stobbs, L. W. and Shuttuck, V. I. 1989. Turnip mosaic virus strains in southern Ontario, Canada. Plant Dis. 73:208-212. https://doi.org/10.1094/PD-73-0208
  113. Suehiro, N., Natsuaki, T., Watanabe, T. and Okuda, S. 2004. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J. Gen. Virol. 85:2087-2098. https://doi.org/10.1099/vir.0.79825-0
  114. Suh, S. K., Green, S. K. and Park, H. G. 1995. Genetic resistance to five strains of turnip mosaic virus in Chinese cabbage. Euphytica 81:71-77. https://doi.org/10.1007/BF00022460
  115. Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A. and Ohshima, K. 2003. The phylogeny of Turnip mosaic virus: comparisons of 38 genomic sequences reveal a Eurasian origin and a recent 'emergence' in east Asia. Mol. Ecol. 12:2099-2111. https://doi.org/10.1046/j.1365-294X.2003.01881.x
  116. Tomimura, K., Spak, J., Katis, N., Jenner, C. E., Walsh, J. A., Gibbs, A. J. and Ohshima, K. 2004. Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330:408-423. https://doi.org/10.1016/j.virol.2004.09.040
  117. Tomitaka, Y. and Ohshima, K. 2006. A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an 'emergent' lineage in Japan. Mol. Ecol. 15:4437-4457. https://doi.org/10.1111/j.1365-294X.2006.03094.x
  118. Tomlinson, J. A. 1987. Epidemiology and control of virus diseases of vegetables. Ann. Appl. Biol. 110:661-681. https://doi.org/10.1111/j.1744-7348.1987.tb04187.x
  119. Tomlinson, J. A. and Ward, C. M. 1981. The reactions of some Brussels sprout F1 hybrids and inbreds to cauliflower mosaic and turnip mosaic viruses. Ann. Appl. Biol. 97:205-212. https://doi.org/10.1111/j.1744-7348.1981.tb03013.x
  120. Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N. and Miller, W. A. 2012. Interaction of the trans-frame potyvirus protein P3N-PIPO with the host protein PCaP1 facilitates potyvirus movement. PLoS Pathog. 8:e1002639. https://doi.org/10.1371/journal.ppat.1002639
  121. Walkey, D. G. A. and Neely, H. A. 1980. Resistance in white cabbage to necrosis caused by turnip and cauliflower mosaic viruses and pepper-spot. J. Agric. Sci. 95:703-713. https://doi.org/10.1017/S0021859600088109
  122. Walkey, D. G. A. and Pink, D. A. C. 1988. Reaction of white cabbage (Brassica oleracea var. capitata) to four different strains of turnip mosaic virus. Ann. Appl. Biol. 112:273-284. https://doi.org/10.1111/j.1744-7348.1988.tb02063.x
  123. Walsh, J. A. 1989. Genetic control of immunity to turnip mosaic virus in winter oilseed rape (Brassica napus spp. oleifera) and the effects of foreign isolates of the virus. Ann. Appl. Biol. 115:89-99. https://doi.org/10.1111/j.1744-7348.1989.tb06815.x
  124. Walsh, J. A. and Jenner, C. E. 2002. Turnip mosaic virus and the quest for durable resistance. Mol. Plant Pathol. 3:289-300. https://doi.org/10.1046/j.1364-3703.2002.00132.x
  125. Walsh, J. A. and Jenner, C. E. 2006. Resistance to Turnip mosaic virus in the Brassicaceae. In: Natural resistance mechanisms of plants to viruses, eds. by G. Loebenstein and J. P. Carr, pp. 425-430. Springer, Dordrecht, The Netherlands.
  126. Walsh, J. A., Rusholme, R. L., Hughes, S. L., Jenner, C. E., Bambridge, J. M., Lydiate, D. J. and Green, S. K. 2002. Different classes of resistance to turnip mosaic virus in Brassica rapa. Eur. J. Plant Pathol. 108:15-20. https://doi.org/10.1023/A:1013962911906
  127. Walsh, J. A., Sharpe, A. G., Jenner, C. E. and Lydiate, D. J. 1999. Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor. Appl. Genet. 99:1149-1154. https://doi.org/10.1007/s001220051319
  128. Wang, H.-Y., Liu J.-L., Gao, R., Chen, J., Shao, Y.-H. and Li, X.-D. 2009a. Complete genomic sequence analysis of Turnip mosaic virus basal-BR isolates from China. Virus Genes 38:421-428. https://doi.org/10.1007/s11262-009-0335-4
  129. Wang, S., Han, K., Peng, J., Zhao, J., Jiang, L., Lu, Y., Zheng, H., Lin, L., Chen, J. and Yan, F. 2019. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. Mol. Plant Pathol. 20:990-1004. https://doi.org/10.1111/mpp.12808
  130. Wang, X., Chen, H., Zhu, Y. and Hou, R. 2009b. An AFLP marker to turnip mosaic virus resistance gene in pak-choi. Afr. J. Biotechnol. 8:2508-2512.
  131. Wei, T., Zhang, C., Hou, X., Sanfacon, H. and Wang, A. 2013. The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog. 9:e1003378. https://doi.org/10.1371/journal.ppat.1003378
  132. Wittmann, S., Chatel, H., Fortin, M. G. and Laliberte, J. F. 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translation eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84-92. https://doi.org/10.1006/viro.1997.8634
  133. Xinhua, W., Yang, L. and Houying, C. 2011. A linkage map of pak-choi (Brassica rapa ssp. chinensis) based on AFLP and SSR markers and identification of AFLP markers for resistance to TuMV. Plant Breed. 130:275-277. [Note, the authors names on this paper were incorrectly published. They actually should be Wang, X(H)., Li Y. and Chen, H(Y)., as identified in the review by Li et al., 2019a.] https://doi.org/10.1111/j.1439-0523.2010.01811.x
  134. Yasaka, R., Fukagawa, H., Ikematsu, M., Soda, H., Korkmaz, S., Golnaraghi, A., Katis, N., Ho, S. Y. W., Gibbs, A. J. and Ohshima, K. 2017. The timescale of emergence and spread of turnip mosaic virus. Sci. Rep. 7:4240. https://doi.org/10.1038/s41598-017-01934-7
  135. Yoon, J. Y., Green, S. K. and Opena, R. T. 1993. Inheritance of resistance to turnip mosaic virus in Chinese cabbage. Euphytica 69:103-108. https://doi.org/10.1007/BF00021732
  136. Yoshii, H. 1963. On the strain distribution of turnip mosaic virus. Ann. Phytopathol. Soc. Jpn. 28:221-227. https://doi.org/10.3186/jjphytopath.28.221
  137. Yu, H.-J., Jeong, Y.-M. and Mun, J.-H. 2017a. Comparative analysis of the radish genome with Brassica genomes. In: The radish genome, compendium of plant genomes, eds. by T. Nishio and H. Kitashiba, pp. 53-69. Springer International Publishing AG, Cham, Switzerland.
  138. Yu, X., Choi, S. R. and Lim, Y. P. 2017b. Molecular mapping of disease resistance genes. In: The radish genome, compendium of plant genomes, eds. by T. Nishio and H. Kitashiba, pp. 165-175. Springer International Publishing AG, Cham, Switzerland.
  139. Yu, Z., Zhao, S. and He, Q. 2007. High level resistance to Turnip mosaic virus in Chinese cabbage (Brassica campestris ssp. Pekinensis (Lour) Olsson) transformed with the antisense NIb gene using marker-free Agrobacterium tumefaciens infiltration. Plant Sci. 172:920-929. https://doi.org/10.1016/j.plantsci.2006.12.018
  140. Zhang, C., Lyu, S., Gao, L., Song, X., Li, Y. and Hou, X. 2018. Genome-wide identification, classification, and expression analysis of SNARE genes in Chinese cabbage (Brassica rapa ssp. pekinensis) infected by Turnip mosaic virus. Plant Mol. Biol. Rep. 36:210-224. https://doi.org/10.1007/s11105-017-1060-0
  141. Zhang, F. L., Wang, M., Liu, X. C., Zhao, X. Y. and Yang, J. P. 2008a. Quantitative trait loci analysis for resistance against Turnip mosaic virus based on a double-haploid population in Chinese cabbage. Plant Breed. 127:82-86. https://doi.org/10.1111/j.1439-0523.2007.01431.x
  142. Zhang, J.-H., Qu, S.-P. and Cui, C.-S. 2008b. Analysis of QTL for Turnip mosaic virus resistance in Chinese cabbage. Acta Phytopathol. Sin. 38:178-184. https://doi.org/10.3321/j.issn:0412-0914.2008.02.010
  143. Zhang, X.-W., Yuan, Y.-X., Wang, X.-W., Sun, R.-F., Wu, J., Xie, C.-H., Jang, W.-S. and Yao, Q.-J. 2009. QTL mapping for TuMV resistance in Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour.) Olssom]. Acta Hortic. Sin. 36:731-736.
  144. Zhao, M.-A., An, S.-J., Lee, S.-C., Kim, D.-S. and Kang, B.-C. 2013. Overexpression of a single-chain variable fragment (scFv) antibody confers unstable resistance to TuMV in Chinese cabbage. Plant Mol. Biol. Rep. 31:1203-1211. https://doi.org/10.1007/s11105-013-0577-0
  145. Zink, F. W. and Duffus, J. E. 1970. Linkage of turnip mosaic virus susceptibility and downy mildew (Bremia lactucae) in lettuce. J. Am. Soc. Hortic. Sci. 95:420-422. https://doi.org/10.21273/JASHS.95.4.420