DOI QR코드

DOI QR Code

Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation

  • Choi, Ji Won (Department of Systems Biotechnology, Konkuk University) ;
  • Lim, Jun (Department of Systems Biotechnology, Konkuk University)
  • Received : 2016.04.21
  • Accepted : 2016.05.25
  • Published : 2016.07.31

Abstract

Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.

Keywords

References

  1. Abrash, E.B., and Bergmann, D.C. (2009). Asymmetric cell divisions: a view from plant development. Dev. Cell 16, 783-796. https://doi.org/10.1016/j.devcel.2009.05.014
  2. Azhakanandam, S., Nole-Wilson, S., Bao, F., and Franks, R.G. (2008). SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiol. 146, 1165-1181. https://doi.org/10.1104/pp.107.114751
  3. Bao, F., Azhakanandam, S., and Franks, R.G. (2010). SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis. Plant Physiol. 152, 821-836. https://doi.org/10.1104/pp.109.146183
  4. Baum, S.F., Dubrovsky, Joseph G., and Rost, Thomas L. (2002). Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. Am. J. Bot. 89, 908-920. https://doi.org/10.3732/ajb.89.6.908
  5. Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M.T., and Aeschbacher, R.A. (1993). Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57-70.
  6. Bolle, C. (2004). The role of GRAS proteins in plant signal transduction and development. Planta 218, 683-692. https://doi.org/10.1007/s00425-004-1203-z
  7. Coudert, Y., Perin, C., Courtois, B., Khong, N.G., and Gantet, P. (2010). Genetic control of root development in rice, the model cereal. Trends Plant Sci. 15, 219-226. https://doi.org/10.1016/j.tplants.2010.01.008
  8. Cruz-Ramirez, A., Diaz-Trivino, S., Blilou, I., Grieneisen, V.A., Sozzani, R., Zamioudis, C., Miskolczi, P., Nieuwland, J., Benjamins, R., Dhonukshe, P., et al. (2012). A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150, 1002-1015. https://doi.org/10.1016/j.cell.2012.07.017
  9. Cui, H. (2015). Cortex proliferation in the root is a protective mechanism against abiotic stress. Plant Signal. Behav. 10, e1011949. https://doi.org/10.1080/15592324.2015.1011949
  10. Cui, H., and Benfey, P.N. (2009a). Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root. Plant J. 58, 1016-1027. https://doi.org/10.1111/j.1365-313X.2009.03839.x
  11. Cui, H., and Benfey, P.N. (2009b). Cortex proliferation: simple phenotype, complex regulatory mechanisms. Plant Signal. Behav. 4, 551-553. https://doi.org/10.4161/psb.4.6.8731
  12. Cui, H., Levesque, M.P., Vernoux, T., Jung, J.W., Paquette, A.J., Gallagher, K.L., Wang, J.Y., Blilou, I., Scheres, B., and Benfey, P.N. (2007). An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421-425. https://doi.org/10.1126/science.1139531
  13. Cui, H., Kong, D., Wei, P., Hao, Y., Torii, K.U., Lee, J.S., and Li, J. (2014). SPINDLY, ERECTA and its ligand STOMAGEN have a role in redox-mediated cortex proliferation in the Arabidopsis root. Mol. Plant 7, 1727-1739. https://doi.org/10.1093/mp/ssu106
  14. De Smet, I., and Beeckman, T. (2011). Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat. Rev. Mol. Cell Biol. 12, 177-188. https://doi.org/10.1038/nrm3064
  15. Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A., and Benfey, P.N. (1996). The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423-433. https://doi.org/10.1016/S0092-8674(00)80115-4
  16. Dinneny, J.R. (2014). A gateway with a guard: how the endodermis regulates growth through hormone signaling. Plant Sci. 214, 14-19. https://doi.org/10.1016/j.plantsci.2013.09.009
  17. Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., and Scheres, B. (1993). Cellular organization of the Arabidopsis thaliana root. Development 119, 71-84.
  18. Duan, L., Dietrich, D., Ng, C.H., Chan, P.M., Bhalerao, R., Bennett, M.J., and Dinneny, J.R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25, 324-341. https://doi.org/10.1105/tpc.112.107227
  19. Esau, K. (1953). Plant anatomy. Wiley & Sons, New York.
  20. Esau, K. (1977). Anatomy of seed plants, 2nd edition. Wiley & Sons, New York.
  21. Finkelstein, R.R. (2013). Abscisic acid biosynthesis and response. In The Arabidopsis book 11, e0166.
  22. Finkelstein, R.R., Gampala, S.S., and Rock, C.D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl, S15-45. https://doi.org/10.1105/tpc.010441
  23. Finkelstein, R.R., Reeves, W., Ariizumi, T., and Steber, C. (2008). Molecular aspects of seed dormancy. Ann. Rev. Plant Biol. 59, 387-415. https://doi.org/10.1146/annurev.arplant.59.032607.092740
  24. Franks, R.G., Wang, C., Levin, J.Z., and Liu, Z. (2002). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development 129, 253-263.
  25. Gong, X., Flores-Vergara, M.A., Hong, J.H., Chu, H., Lim, J., Franks, R.G., Liu, Z., and Xu, J. (2016). SEUSS integrates gibberellin signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate middle cortex formation in the Arabidopsis root. Plant Physiol. 170, 1675-1683.
  26. Grigorova B, Mara C, Hollender C, Sijacic P, Chen X, and Liu Z (2011) LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers. Development 138, 2451-2456. https://doi.org/10.1242/dev.058362
  27. Harberd, N.P., Belfield, E., and Yasumura, Y. (2009). The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. Plant Cell 21, 1328-1339. https://doi.org/10.1105/tpc.109.066969
  28. He, C.J., Drew, M.C., and Morgan, P.W. (1994). Induction of enzymes associated with Lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol. 105, 861-865. https://doi.org/10.1104/pp.105.3.861
  29. Heidstra, R., Welch, D., and Scheres, B. (2004). Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964-1969. https://doi.org/10.1101/gad.305504
  30. Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., Hauser, M.T., and Benfey, P.N. (2000). The SHORTROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555-567. https://doi.org/10.1016/S0092-8674(00)80865-X
  31. Heo, J.-O., Chang, K.S., Kim, I.A., Lee, M.-H., Lee, S.A., Song, S.K., Lee, M.M., and Lim, J. (2011). Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root. Proc. Natl. Acad. Sci. USA 108, 2166-2171. https://doi.org/10.1073/pnas.1012215108
  32. Hiratsu, K., Matsui, K., Koyama, T., and Ohme-Takagi, M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733-739. https://doi.org/10.1046/j.1365-313X.2003.01759.x
  33. Hiratsu, K., Mitsuda, N., Matsui, K., and Ohme-Takagi, M. (2004). Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem. Biophys. Res. Commun. 321, 172-178. https://doi.org/10.1016/j.bbrc.2004.06.115
  34. Hoffmann-Benning, S., and Kende, H. (1992). On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99, 1156-1161. https://doi.org/10.1104/pp.99.3.1156
  35. Horvitz, H.R., and Herskowitz, I. (1992). Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237-255. https://doi.org/10.1016/0092-8674(92)90468-R
  36. Jiang, C., and Fu, X. (2007). GA action: turning on de-DELLA repressing signaling. Curr. Opin. Plant Biol. 10, 461-465. https://doi.org/10.1016/j.pbi.2007.08.011
  37. Knoblich, J.A. (2008). Mechanisms of asymmetric stem cell division. Cell 132, 583-597. https://doi.org/10.1016/j.cell.2008.02.007
  38. Ko, J.H., Yang, S.H., and Han, K.H. (2006). Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J. 47, 343-355. https://doi.org/10.1111/j.1365-313X.2006.02782.x
  39. Koizumi, K., Hayashi, T., and Gallagher, K.L. (2012a). SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis. Plant Signal. Behav. 7, 1573-1577. https://doi.org/10.4161/psb.22437
  40. Koizumi, K., Hayashi, T., Wu, S., and Gallagher, K.L. (2012b). The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue. Proc. Natl. Acad. Sci. USA 109, 13010-13015. https://doi.org/10.1073/pnas.1205579109
  41. Lee, M.-H., Kim, B., Song, S.K., Heo, J.O., Yu, N.I., Lee, S.A., Kim, M., Kim, D.G., Sohn, S.O., Lim, C.E., et al. (2008). Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol. Biol. 67, 659-670. https://doi.org/10.1007/s11103-008-9345-1
  42. Lee, S.A., Jang, S., Yoon, E.K., Heo, J.-O., Chang, K.S., Choi, J.W., Dhar, S., Kim, G., Choe, J.E., Heo, J.B., et al. (2016). Interplay between ABA and GA modulates the timing of asymmetric cell divisions in the Arabidopsis root ground tissue. Mol. Plant 9, 870-884. https://doi.org/10.1016/j.molp.2016.02.009
  43. Levesque, M.P., Vernoux, T., Busch, W., Cui, H., Wang, J.Y., Blilou, I., Hassan, H., Nakajima, K., Matsumoto, N., Lohmann, J.U., et al. (2006). Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol. 4, e143. https://doi.org/10.1371/journal.pbio.0040143
  44. Miyashima, S., and Nakajima, K. (2011). The root endodermis: a hub of developmental signals and nutrient flow. Plant Signal. Behav. 6, 1954-1958. https://doi.org/10.4161/psb.6.12.18079
  45. Paquette, A.J., and Benfey, P.N. (2005). Maturation of the ground tissue of the root is regulated by gibberellin and SCARECROW and requires SHORT-ROOT. Plant Physiol. 138, 636-640. https://doi.org/10.1104/pp.104.058362
  46. Pauluzzi, G., Divol, F., Puig, J., Guiderdoni, E., Dievart, A., and Perin, C. (2012). Surfing along the root ground tissue gene network. Dev. Biol. 365, 14-22. https://doi.org/10.1016/j.ydbio.2012.02.007
  47. Peng, J., Carol, P., Richards, D., King, K., Cowling, R., Murphy, G., and Harberd, N. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194-3205. https://doi.org/10.1101/gad.11.23.3194
  48. Pysh, L.D., Wysocka-Diller, J.W., Camilleri, C., Bouchez, D., and Benfey, P.N. (1999). The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111-119. https://doi.org/10.1046/j.1365-313X.1999.00431.x
  49. Rebouillat, J., Dievart, A., Verdeil, J., Escoute, J., Giese, G., Breitler, J., Gantet, P., Espeout, S., Guiderdoni, E., and Perin, C. (2009). Molecular genetics of rice root development. Rice 2, 15-34. https://doi.org/10.1007/s12284-008-9016-5
  50. Rohde, A., Kurup, S., and Holdsworth, M. (2000). ABI3 emerges from the seed. Trends Plant Sci. 5, 418-419. https://doi.org/10.1016/S1360-1385(00)01736-2
  51. Scheres, B., Wolkenfelt, H., Willemsen, V., Terlouw, M., Lawson, E., Dean, C., and Weisbeek, P. (1994). Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120, 2475-2487.
  52. Scheres, B., Di Laurenzio, L., Willemsen, V., Hauser, M.T., Janmaat, K., Weisbeek, P., and Benfey, P.N. (1995). Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121, 53-62.
  53. Shani, E., Weinstain, R., Zhang, Y., Castillejo, C., Kaiserli, E., Chory, J., Tsien, R.Y., and Estelle, M. (2013). Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc. Natl. Acad. Sci. USA 110, 4834-4839. https://doi.org/10.1073/pnas.1300436110
  54. Silverstone, A., Ciampaglio, C., and Sun, T. (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155-169. https://doi.org/10.1105/tpc.10.2.155
  55. Smolarkiewicz, M., and Dhonukshe, P. (2013). Formative cell divisions: principal determinants of plant morphogenesis. Plant Cell Physiol. 54, 333-342. https://doi.org/10.1093/pcp/pcs175
  56. Sridhar VV, Surendrarao A, and Liu Z (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133, 3159-3166. https://doi.org/10.1242/dev.02498
  57. Sun, T.P., and Gubler, F. (2004). Molecular mechanism of gibberellin signaling in plants. Ann. Rev. Plant Biol. 55, 197-223. https://doi.org/10.1146/annurev.arplant.55.031903.141753
  58. Ten Hove, C.A., and Heidstra, R. (2008). Who begets whom? Plant cell fate determination by asymmetric cell division. Curr. Opin. Plant Biol. 11, 34-41. https://doi.org/10.1016/j.pbi.2007.11.001
  59. Tian, C., Wan, P., Sun, S., Li, J., and Chen, M. (2004). Genomewide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol. Biol. 54, 519-532. https://doi.org/10.1023/B:PLAN.0000038256.89809.57
  60. Ubeda-Tomas, S., Swarup, R., Coates, J., Swarup, K., Laplaze, L., Beemster, G.T., Hedden, P., Bhalerao, R., and Bennett, M.J. (2008). Root growth in Arabidopsis requires gibberellin/DELLA signaling in the endodermis. Nat. Cell Biol. 10, 625-628. https://doi.org/10.1038/ncb1726
  61. Ubeda-Tomas, S., Federici, F., Casimiro, I., Beemster, G.T., Bhalerao, R., Swarup, R., Doerner, P., Haseloff, J., and Bennett, M.J. (2009). Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19, 1194-1199. https://doi.org/10.1016/j.cub.2009.06.023
  62. Weiss, D., and Ori, N. (2007). Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144, 1240-1246. https://doi.org/10.1104/pp.107.100370
  63. Wu, S., Lee, C.M., Hayashi, T., Price, S., Divol, F., Henry, S., Pauluzzi, G., Perin, C., and Gallagher, K.L. (2014). A plausible mechanism, based upon SHORT-ROOT movement, for regulating the number of cortex cell layers in roots. Proc. Natl. Acad. Sci. USA 111, 16184-16189. https://doi.org/10.1073/pnas.1407371111
  64. Zentella, R., Zhang, Z.L., Park, M., Thomas, S.G., Endo, A., Murase, K., Fleet, C.M., Jikumaru, Y., Nambara, E., Kamiya, Y., et al. (2007). Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19, 3037-3057. https://doi.org/10.1105/tpc.107.054999
  65. Zhang, Z.L., Ogawa, M., Fleet, C.M., Zentella, R., Hu, J., Heo, J.-O., Lim, J., Kamiya, Y., Yamaguchi, S., and Sun, T.P. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc. Natl. Acad. Sci. USA 108, 2160-2165. https://doi.org/10.1073/pnas.1012232108

Cited by

  1. The SHORT-ROOT regulatory network in the endodermis development of Arabidopsis roots and shoots vol.60, pp.4, 2017, https://doi.org/10.1007/s12374-017-0134-8
  2. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00416
  3. Patterning the Axes: A Lesson from the Root vol.8, pp.1, 2016, https://doi.org/10.3390/plants8010008
  4. A coupled mechano-biochemical model for cell polarity guided anisotropic root growth vol.10, pp.None, 2021, https://doi.org/10.7554/elife.72132
  5. A PHABULOSA-Controlled Genetic Pathway Regulates Ground Tissue Patterning in the Arabidopsis Root vol.31, pp.2, 2016, https://doi.org/10.1016/j.cub.2020.10.038
  6. Dialog between Kingdoms: Enemies, Allies and Peptide Phytohormones vol.10, pp.11, 2016, https://doi.org/10.3390/plants10112243
  7. Root cortex development is fine‐tuned by the interplay of MIGs, SCL3 and DELLAs during arbuscular mycorrhizal symbiosis vol.233, pp.2, 2016, https://doi.org/10.1111/nph.17823