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Introduction 

Understanding the dynamics of sexual manifestations has enormous significance both in 
classical and theoretical research. Hermaphroditism is the major sexual system in the 
plant kingdom, with male and female sexual structures coexisting in the same flower. The 
XY and WZ sex determination systems commonly found in animals have hardly devel-
oped in plants, and are recognized in only a few genera of flowering plants [1]. Addition-
ally, dioecy or isolated sexes have developed in around 7% of all angiosperms [2], typical-
ly from complete-flowered or monoecious descendants [3]. Variation in the outcomes of 
sexual reproduction of plants establishes outcrosses, which are essential for promoting in-
herent disparities and improving the adaptability of plant types. It remains unclear wheth-
er all dioecious organisms have a characteristic sexual morphology. However, theoretical 
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The concepts of phylogeny and floral genetics play a crucial role in understanding the ori-
gin and diversification of flowers in angiosperms. Angiosperms evolved a great diversity of 
ways to display their flowers for reproductive success with variations in floral color, size, 
shape, scent, arrangements, and flowering time. The various innovations in floral forms and 
the aggregation of flowers into different kinds of inflorescences have driven new ecological 
adaptations, speciation, and angiosperm diversification. Evolutionary developmental biolo-
gy seeks to uncover the developmental and genetic basis underlying morphological diversi-
fication. Advances in the developmental genetics of floral display have provided a founda-
tion for insights into the genetic basis of floral and inflorescence evolution. A number of 
regulatory genes controlling floral and inflorescence development have been identified in 
model plants such as Arabidopsis thaliana and Antirrhinum majus using forward genetics, 
and conserved functions of many of these genes across diverse non-model species have 
been revealed by reverse genetics. Transcription factors are vital elements in systems that 
play crucial roles in linked gene expression in the evolution and development of flowers. 
Therefore, we review the sex-linked genes, mostly transcription factors, associated with the 
complex and dynamic event of floral development and briefly discuss the sex-linked genes 
that have been characterized through next-generation sequencing. 
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findings indicate that sex-linked genes specifically accumulated in 
the recombination-suppressed regions of one of the gonosomes. 
This accumulation of gonosome-specific genes resulted in the cor-
poreal differentiation of the masculine and feminine sex chromo-
somes [4]. More precisely, the evolution of sexual patterns was ini-
tiated with the expression of sex-linked genes within a recombina-
tion-suppressed region of a chromosome.  

The concepts of phylogeny and floral genetics play a crucial role 
in understanding the origin and diversification of flowers in angio-
sperms [5]. Out of 25,500 (Approx) genes in Arabidopsis, more 
than 20,000 genes are responsible for pollen development at some 
point in time [6]. Research on the genetics and molecular biology 
of floral development and sex differentiation has resulted in the 
discovery of various floral identity genes. The majority of these 
genes belong to a smaller set of regulators called transcription fac-
tors (TFs), which govern the complexity of the transition from the 
floral meristem to the mature flower, as well as deciphering of the 
sexes. Floral organ speciation (sepals, petals, stamens, and carpels) 
and sexual variability are combined activities of floral homeotic 
genes, according to the ABC model [7]. Our aim here is to present 
a detailed review of sex-linked genes, including TFs and others 
that have been found to be involved in sex differentiation or floral 
development. 

Sex-Linked Genes in Flowering Plants 

Phenotyping of floral mutants and their associated genetic interac-
tion studies have shown that A function genes alone specify sepals, 
while the combined activity of A and B class genes leads to petals. 
Stamen development reflects the combined contributions of the B 
and C genes, while C functioning alone leads to carpels [7,8]. A 
comprehensive re-evaluation of the ABC model then led to the in-
clusion of the E function genes (the ABCE model), which are as-
sociated with the speciation of all organ types [9,10]. Subsequent-
ly, the D class genes were added, which determine the feature of 
ovule development in female flowers. These floral-specific genes 

code for the MADS-box family of TFs and are highly diversified in 
plants [11]. Based on their characterization in A. thaliana, APETA-
LA1 (AP1) and APETALA2 (AP2) are A function genes, the B 
function is contributed by APETALA3 (AP3) and PISTILLATA 
(PI), the C function is encoded by AGAMOUS (AG), and the E 
function is carried out by multiple SEPALLATA (SEP) genes (i.e., 
SEP1 to SEP4) [12]. 

In Silene latifolia, the Y chromosome-linked SlAP3 gene encodes 
the Apetala 3 MADS box protein in male flowering buds [13]. 
SlAP3 exhibited high similarity with the Arabidopsis floral identity 
gene AP3, which is responsible for floral morphogenesis and organ 
identity [14]. Another Y-linked sequence named CCLS96 from S. 
latifolia encoding multiple copy numbers of non-coding RNAs has 
been found to be responsible for male bud expression [15]. 
X-linked genes in S. latifolia, such as MROS3X and SlMF1, demon-
strated significantly high expression in female floral buds [13,16]. 
A few XY-linked genes, such as SlssX/SlssY, SlX1/SlY1, SlX3/
SlY3, SlX4/SlY4, and DD44X/Y, have also been characterized in S. 
latifolia and are believed to have housekeeping functions [17]. A 
list of the sex-linked genes identified in different plant species is 
presented in Table 1. 

TFs and the Regulation of Flower 
Development 

TFs are a group of regulatory proteins that play critical roles in al-
tering the expression of genes associated with cellular pathways 
and biological processes, including sex differentiation, floral devel-
opment, and the floral transition [18]. A wide range of TFs are 
known as major determinants of sex speciation in angiosperms. 
The most prominent are the MADS-box family TFs, which play 
important roles in many aspects of plant growth and are crucially 
involved in floral organ speciation and reproductive development 
[19]. These proteins are characterized by the presence of a 58–60 
amino acid-long conserved MADS-box DNA binding domain at 
the N-terminus that dimerizes to specific DNA sequences called 

Table 1. Major sex-linked genes characterized in different plant species

Gene Symbol Species Function
AGAMOUS-LIKE 65, 66, 104 AGL65, 66,104 Arabidopsis thaliana Pollen maturation and tube growth
AGAMOUS AG Arabidopsis thaliana Homeotic C-class gene; carpel and stamen specification, lineage-specific 

sub functionalization of the homeotic C function; fruit development  
(e.g., tomato versus Arabidopsis)

SHATTERPROOF 1, 2 SHP1, 2 Arabidopsis thaliana Carpel, ovule, and fruit development; dehiscence; periodic lateral root  
formation

APATELA 3, PISTILATA AP3, PI Arabidopsis thaliana Floral homeotic B function, specification of petaloid organs

(Continued to the next page)
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Gene Symbol Species Function
FLORAL LOCUS C FLC Arabidopsis thaliana Potential role in floral bud dormancy; perennial life history in Arabis alpina
SQUAMOUS SQUA Antirrhinum majus Floral meristem and organ identity specification; floral transition; fruit  

development
STMADS11 Arabidopsis thaliana Control of floral transition; repression of precocious homeotic gene  

expression
AGAMOUS-LIKE 2 AGL2 Arabidopsis thaliana Floral homeotic E function
A BSISTER ABS Arabidopsis thaliana Endothelium development in seeds
SEEDSTICK STK Arabidopsis thaliana Carpel and ovule development; periodic lateral root formation
XAANTAL1 XAL1 Arabidopsis thaliana Transition to flowering
MADS AFFECTING MAF5 Arabidopsis thaliana Transition to flowering (activator)
FLOWERING 5
CAULIFLOWER CAL Arabidopsis thaliana Meristem identity specification
FRUITFULL FUL Arabidopsis thaliana Meristem identity specification; annual life cycle regulator, with SOC1; 

fruit development; cauline leaf growth
AGAMOUS-LIKE 24 AGL24 Arabidopsis thaliana Transition to flowering (activator)
SHORT VEGETATIVEPHASE SVP Arabidopsis thaliana Transition to flowering (repressor)
APETALA1 AP Arabidopsis thaliana Meristem identity specification; homeotic A-class gene
DIANA (AGAMOUS-LIKE 61) DIA Arabidopsis thaliana Central cell and endosperm development
AGAMOUS-LIKE 23 AGL23 Arabidopsis thaliana Embryo sac development
SUPPRESSOR OF OVEREXPRESSION 

OF CONSTANS 1
SOC1 Arabidopsis thaliana Transition to flowering (activator); periodic lateral root formation

AP3 MADS box gene SLAP3 Silene latifolia Male floral bud development
DUF538 MROS3X Silene latifolia Male floral bud development
PLENA PLE Antirrhinum majus Specify stamen and carpel identity
Floral binding protein gene FBP7, FBP11 Petunia hybrida Ovule identity
FARINELLI FAR Antirrhinum majus Male fertility
PrMADS1, PrMADS1, PrMADS2 PRMADS1,2,3 Pinus radiata Petal, stamen, and carpel development, and preventing the indeterminate 

growth of the flower meristem.
DEFICIENS/GLOBASA DEF/GLO Antirrhinum majus Petal and stamen identity
Gerbera MADS box gene GRCD1 Gerbera hybrida Stamen development and identity
 Zea Agamous 3 ZAG3 Zea mays Carpel development
ZmMADS1 ZMM5 Zea mays Expressed during flower development: in egg cells and embryos
CmWIP1 CmWIP1 Cucumis melo Stamen development in male flowers and suppression of carpel  

development
CmACS7 CmACS7 Cucumis melo Stamen suppression in female flower development
OGI OGI Diospyros lotus Suppression of anther development in female flowers
Domain of unknown function 247 DUF 247 Asparagus officinalis Suppressor of pistil development
RADIALIS RAD1 and RAD2 Rumex acetosa Stamen whorl development
Ras-proximate-1 or Ras-related  

protein 1
RAP1 Rumex acetosa Carpel and stamen whorl specification/ development

TASSELSEED2 ts2 Zea mays Male sex determination and stamen development
STABILIZED1 STA1 Silene latifolia Tapetum development in male flowers
Silene latifolia MADS1 SLM1 Silene latifolia Specify stamen and carpel identity
Silene latifolia MADS2 SLM 2 Silene latifolia Developing stamens of smut-infected female flowers
Silene latifolia MADS3 SLM 3 Silene latifolia Repression of gynoecium development in male flowers
AGAMOUS-LIKE 80 AGL80 Arabidopsis thaliana Central cell and endosperm development
Silene latifolia MADS4,5 SLM 4,5 Silene latifolia Floral meristem and organ identity specification; floral transition; fruit  

development
Silene latifolia sepallata 1 and 3 SlSEP1 and SlSEP3 Silene latifolia Expressed in young flower meristems, developing petals, male anthers,  

and female ovules

Table 1. Continued
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“CArG boxes” [20]. Based on protein domain structures, the 
MADS-box genes have been divided into two lineages: type I and 
type II. The type I or M-type gene forms a heterogeneous group 
with short DNA sequences (≈ 180 bp) encoding only the MADS 
domain and are classified as Mα, Mβ, and Mγ based on phylogeny. 
Although they constitute the major component of MADS-box 
genes in many plants, their functional attributes have only been 
characterized recently [21]. The type II or MIKC genes are char-
acterized by the presence of additional domains, including an in-
tervening (I) domain, a keratin-like (K) domain, and a C-terminal 
(C) domain. They are classified as canonical (MIKCC) or star 
type (MIKC*) depending on the alteration of their motif struc-
ture. Additionally, MIKCC genes are further divided into 14 clades 
based on phylogenetic relationships and distinct sequence motifs 
in their C-terminal domains [22]. An alteration in the C-terminal 
motif results in the transcriptional activation of specific DNA se-
quences through the formation of multimeric MADS-box protein 
complexes [19]. The MIKC subfamilies are often conserved and 
exhibit similar functions in the growth of different plants, as well as 
in reproductive and vegetative speciation, such as in the differenti-
ation of the floral meristem (APETALA 1 [AP1], FRUITFUL 
[FUL], and CAULIFLOWER), the development of floral organs 
(AP1, APETALA3 [AP3], PISTILLATA [PI], AGAMOUS [AG], 
and SEPALLATA 1-3 [SEP1-3]), the regulation of flowering time 
(SUPPRESSOR OF OVEREXPRESSION OF CONSTANT 1 
[SOC1], FLOWERING LOCUS C [FLC], SHORT VEGETATIVE 
PHAGE [SVP], AGAMOUS-LIKE 24 [AGL24]), fruit maturation 
(SHATTERPROOF 1-2 [SHP1-2]), embryonic development 
(TRANSPARENT TESTA 16 [TT16]), and root growth (AGA-
MOUS-LIKE 17 [AGL17]) (reviewed in Smaczniak et al. 2012; 
Theiben et al. 2016) [19,20]. The key function of MIKCC genes 
is classified into five classes: A, B, C, D, and E, each with multiple 
MADS-box TFs directly involved in the development of the floral 
quartet model [19,20]. The ABCDE model accounts for the regu-
lation of flowering plants. Several reports have shown that MIKCC 
genes are fundamental to organogenesis, such that the combina-
tion of A + E genes identifies sepals, A + B + E specifies petals, B + 
C + E yields stamens, C + E gives carpels, and C + D + E specifies 
ovules. In contrast, MIKC* genes have been implicated in floral 
transition and gametophytic development [19]. Moreover, the 
FLC subfamily of genes also plays a role in controlling flowering 
through vernalization in A. thaliana [23]. AGL12 has been impli-
cated in pigment accumulation and root development in the floral 
transition in rice and proliferation of the root meristem in Arabi-
dopsis [24]. Similarly, TM8 genes control flower development in 
tomatoes and grapevines [25]. Most of the SOC family proteins 

act as activators, whereas SVP-related genes act repressors of floral 
patterning and the floral meristem in both monocots and dicots 
[26,27]. 

In addition to the MADS-box family of proteins, TFs encoding 
zinc fingers also function as major components of the architecture 
for plant development and organ differentiation [28]. The expres-
sion of CmWIP1, a sex-linked gene encoding C2H2 zinc finger pro-
tein, has been found to cause carpel abortion and the development 
of male flowers in Cucumis melo [29]. The MYB family of TFs 
plays a significant role in plant development and sex differentia-
tion, as has been established in 

A. thaliana. AtMYB21, AtMYB24, AtMYB57, AtMYB108/
BOS1, AtMYB35/TDF1, AtMYB80, and AtMYB99 are inde-
pendently and individually responsible for anther development 
and/or function [30,31]. AtMYB33 and AtMYB65 assist in both 
anther and pollen development [32]. AtMYB115 and AtMYB118 
are associated with embryogenesis [33], while AtMYB125 con-
trols male germ cell division and differentiation [34]. AtMYB105 
and AtMYB117 control lateral organ separation and axillary meri-
stem formation [35]. Recently, an MYB-like gene (male-specific 
expression [MSE1]) linked to early anther development has been 
isolated from Asparagus officinalis [36]. Homeodomain-leucine 
zippers (HD-Zips) are a specific group of plant TFs with signifi-
cant role in plant development, floral differentiation, and embryo-
genesis [37]. MeGI, an HD-Zip gene, acts as a regulatory factor 
for anther fertility and as a major sex determinant in the dioecious 
persimmon Diospyros lotus [38]. Furthermore, many other TFs in-
cluding WRKY, F-box, SPL, GATA, YABBY, and DELLA have 
been implicated in various processes of plant development and flo-
ral differentiation [19,20]. 

Characterization of Sex-Linked Genes 
through Next-Generation Sequencing 

The complex and dynamic event of floral development depends 
on the tight regulation of gene expression and controlled environ-
mental cues [39]. In recent years, several studies have been report-
ed regarding floral development and whorl speciation in hermaph-
rodites, as well as unisexual plants of model and non-model species 
[40-45]. However, the majority of these studies are based on mu-
tant analysis. For example, a sex determination gene (TASSEL-
SEED2) in maize encodes a short-chain alcohol dehydrogenase 
required for stage-specific floral organ abortion [46], and a con-
served mutation in the active site of 1-aminocyclopropane-1-car-
boxylic acid synthase leads to andromonoecy in melons [47]. 
However, sex differentiation is a complex phenomenon in angio-
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sperms, with the involvement of several genes that are differential-
ly expressed in diverse tissues and developmental phases [48]. Un-
der these circumstances, the identification and characterization of 
a few sex-linked genes at a particular stage may not be able to pro-
vide the entire mechanism of sex determination in a given species 
[49]. In other words, it is essential to characterize myriads of genes 
from different developmental stages of dioecious species to under-
stand the complexity of plant sex determination. Large-scale gene 
expression analysis methods such as mRNA differential display, 
suppression subtractive hybridization, reverse-transcription poly-
merase chain reaction, and microarrays have been previously used 
to assess the vital stages of sex determination in a wide range of 
plants [50,51]. However, these methods had limited applications 
for understanding sex determination due to their poor sensitivity, 
the inconvenience of cross-hybridization, and the non-availability 
of the total genome sequences. The advent of next-generation 
RNA-sequencing (RNA-Seq) technology has offered a powerful, 
economical, and highly sensitive method for the discovery of novel 
transcripts and the assessment of transcriptome dynamics [52]. 
Moreover, a de novo assembly of RNA-Seq reads can be efficiently 
used for gene discovery in non-model plant species where the total 
genome information is unavailable [53]. 

Next-generation sequencing (NGS) technologies have facilitat-
ed gene discovery and the global analysis of molecular mecha-
nisms related to growth and development in numerous plant spe-
cies, including members of the Cucurbitaceae family. Transcrip-
tome profiling and comparison between gynoecious and her-
maphrodite cucumber plants resulted in the identification of 200 
differentially expressed genes (DEGs) with a significant role in 
plant sex determination process [54]. In another study, Solexa se-
quencing was performed to determine the transcript profile of api-
cal tissues from a gynoecious mutant and a monoecious wild type 
of cucumber [40]. A total of 143 upregulated and 600 downregu-
lated genes were identified in the mutant type. The study suggest-
ed that multiple genes from plant hormone signaling pathways, in-
cluding ACS, Asr1, CsIAA2, CS-AUX1, TLP, and EREBP, play crit-
ical roles in sex determination and floral development in cucum-
bers. Similarly, RNA-Seq analysis of two near-isogenic lines of 
melons (male sterile line DAH3615-MS and male fertile line 
DAH3615) resulted in the identification of 1,259 DEGs signifi-
cantly associated with male fertility [55]. The majority of these 
genes were linked to pathways related to pollen development, sta-
men development, and pollen tube elongation. 

Among other plant species, a genome-wide high-throughput 
transcriptomic sequencing for young floral buds of sterile and fer-
tile plants of Brassica napus and subsequent mapping onto the AA 

and BB genomes revealed a total of 3231 genes of B. rapa and 
3,371 genes of B. oleracea with considerable differential expression 
levels [56]. That study reported 760 DEGs specific to fertile and 
44 DEGs specific to sterile plants. After Gene Ontology (GO) an-
notation, 11 DEGs were identified as involved in pollen wall as-
sembly (GO: 0010208), of which three DEGs were beta-1,3-glu-
canase genes (Bra028343, Bra037057, Bra038969) implicated in 
male gametophyte development and pollination. Similarly, 454 
pyrosequencing and a comparative analysis during the develop-
ment of male and female flowers of the monoecious species Quer-
cus suber revealed DEGs in the early and late stages of development 
of female and male flowers, some of which were shown to be in-
volved in pollen development, ovule formation, and flower devel-
opment of other species with a monoecious, dioecious, or her-
maphroditic sexual system [57]. Interestingly, a homolog for PO-
LYGALACTURONASE-1, which is expressed 356 times more in 
female tissues, has been previously associated with pollen [58-60] 
and carpel development [61]. Another gene, QsENDO-BE-
TA-1,3-1,4 GLUCANASE, a member of the glycoside hydrolase 
family, which is 199 times more expressed in female samples, has 
been linked to male sterility due to defects in anther dehiscence 
[62]. Illumina sequencing of inflorescent meristems and the flow-
ering stages of sugar apples (Annona squamosa L.) resulted in 
71,948 unigenes, 147 of which were represented by various TF 
families involved in floral transition and development [63]. Like-
wise, different NGS platforms and diverse sequencing chemistries 
have been utilized to characterize DEGs in the male and female 
Salix suchowensis [64], DEGs linked with pistil abortion in Japa-
nese apricots [65], genes linked to sex type differentiation in Gink-
go biloba L. [66] and genes associated with the regulatory mecha-
nism of floral development in olive (Oleaeuropaea L.) [67]. Most 
recently, RNA-Seq analysis was performed to study the floral bud 
differentiation in Magnolia sinostellata [68]. The study revealed 82 
genes out of a total of 11,592 DEGs involved in flowering and 20 
genes were found to be critically involved in bud differentiation at 
different stages of flower development. Overall, these studies sug-
gest that NGS analysis and the associated bioinformatics compo-
nents have laid the foundation for the genome-wide characteriza-
tion and functional prediction of genes linked to floral develop-
ment and sex differentiation in angiosperms. 

Conclusion 

To understand the complex and dynamic event of floral develop-
ment, research in floral evolution and development is using a com-
bination of approaches to elucidate the genetic basis for the enor-
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mous diversity in floral morphology. The need of the hour is to 
understand how this variation has contributed to the radiation of 
angiosperms. Sex-linked genes, especially TFs, are key players in 
flower development, and further research needs to be done in this 
promising area to comprehend the event of floral development. 
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