• Title/Summary/Keyword: approximation technique

Search Result 560, Processing Time 0.028 seconds

A Transfer Function Synthesis for Model Approximation with Resonance Peak Value (첨두공진점을 갖는 모델 근사화를 위한 전달함수 합성법)

  • Kim, Jong-Gun;Kim, Ju-Sik;Kim, Hong-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • This paper proposes a frequency transfer function synthesis for approximating a high-order model with resonance to a low-order model in the frequency domain. The presented model approximation method is based on minimizing the error function weighted by the numerator polynomial of approximated models, which is used of the RLS(Recursive Least Square) technique to estimate the coefficient vector of approximated models. The proposed method provides better fitting in a low frequency and peak resonance. And an example is given to illustrate feasibilities of the suggested schemes.

Coding-based Storage Design for Continuous Data Collection in Wireless Sensor Networks

  • Zhan, Cheng;Xiao, Fuyuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.493-501
    • /
    • 2016
  • In-network storage is an effective technique for avoiding network congestion and reducing power consumption in continuous data collection in wireless sensor networks. In recent years, network coding based storage design has been proposed as a means to achieving ubiquitous access that permits any query to be satisfied by a few random (nearby) storage nodes. To maintain data consistency in continuous data collection applications, the readings of a sensor over time must be sent to the same set of storage nodes. In this paper, we present an efficient approach to updating data at storage nodes to maintain data consistency at the storage nodes without decoding out the old data and re-encoding with new data. We studied a transmission strategy that identifies a set of storage nodes for each source sensor that minimizes the transmission cost and achieves ubiquitous access by transmitting sparsely using the sparse matrix theory. We demonstrate that the problem of minimizing the cost of transmission with coding is NP-hard. We present an approximation algorithm based on regarding every storage node with memory size B as B tiny nodes that can store only one packet. We analyzed the approximation ratio of the proposed approximation solution, and compared the performance of the proposed coding approach with other coding schemes presented in the literature. The simulation results confirm that significant performance improvement can be achieved with the proposed transmission strategy.

Sliding Mode Controller Design Considering Weight (가중치를 고려한 슬라이딩 모드 제어기 설계)

  • 임동균;서병설
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.223-230
    • /
    • 1999
  • A conventional sliding mode control approach is often impractical or difficult when it is applied to high order process b because the number of tuning parameters in the sliding mode controller increases with the order of the plant. C Camacho(l996) proposed a design method of a fixed structure sliding mode controller based on a first order plus dead t time approximation to the higher-order process. But, his method has such problems as chattering, over‘shoot, and c command following due to the Taylor the approximation en‘ors for the time delay term of the first order model. In this p paper, a new design technique for a sliding mode controller based on the modified Taylor approximation considered a w weight is developed to improve the Camacho's problems.

  • PDF

Skin Region Detection Using a Mean Shift Algorithm Based on the Histogram Approximation

  • Byun, Ki-Won;Nam, Ki-Gon;Ye, Soo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • In conventional, skin detection methods using for skin color definitions is based on prior knowledge. By experimentation, the threshold value for dividing the background from the skin region is determined subjectively. A drawback of such techniques is that their performance is dependent on a threshold value which is estimated from repeated experiments. To overcome this, the present paper introduces a skin region detection method. This method uses a histogram approximation based on the mean shift algorithm. This proposed method applies the mean shift procedure to a histogram of a skin map of the input image. It is generated by comparing with the standard skin colors in the $C_bC_r$ color space. It divides the background from the skin region by selecting the maximum value according to the brightness level. As the histogram has the form of a discontinuous function. It is accumulated according to the brightness values of the pixels. It is then, approximated by a Gaussian mixture model (GMM) using the Bezier curve technique. Thus, the proposed method detects the skin region using the mean shift procedure to determine a maximum value. Rather than using a manually selected threshold value, as in existing techniques this becomes the dividing point. Experiments confirm that the new procedure effectively detects the skin region.

Optimization approach applied to nonlinear analysis of raft-pile foundations

  • Tandjiria, V.;Valliappan, S.;Khalili, N.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.533-550
    • /
    • 1999
  • Optimal design of raft-pile foundations is examined by combining finite element technique and the optimization approach. The piles and soil medium are modeled by three dimensional solid elements while the raft is modelled by shell elements. Drucker-Prager criterion is adopted for the soil medium while the raft and the piles are assumed to be linear elastic. For the optimization process, the approximate semi-analytical method is used for calculating constraint sensitivities and a constraint approximation method which is a combination of the extended Bi-point approximation and Lagrangian polynomial approximation is used for predicting the behaviour of the constraints. The objective function of the problem is the volume of materials of the foundation while the design variables are raft thickness, pile length and pile spacing. The generalized reduced gradient algorithm is chosen for solving the optimization process. It is demonstrated that the method proposed in this study is promising for obtaining optimal design of raft-pile foundations without carrying out a large number of analyses. The results are also compared with those obtained from the previous study in which linear analysis was carried out.

Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc (접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성)

  • Kim, Jooyoung;Cho, Kyuman;Lee, Kyeong-Seok
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.464-470
    • /
    • 2008
  • Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

Optimal Displacement Control of Shear Wall Structure using Sensitivity Analysis Technique (감도해석기법을 이용한 전단벽 구조물의 최적변위제어)

  • Lee Han-Joo;Jung Sung-Jin;Kim Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.121-128
    • /
    • 2005
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for shear wall structures subject to lateral loads. To this end the displacement sensitivity depending on behavior characteristics of shear wall structures is established. Also, the approximation concept that can preserve the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Resizing sections in the stiffness-based optimal design are assumed to be uniformly varying in size and the technique of member grouping is considered for the improvement of construction efficiency Two types of 11-story shear wall structures are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

Efficient Hausdorff Distance Computation for Planar Curves (평면곡선에 대한 Hausdorff 거리 계산의 가속화 기법에 대한 연구)

  • Kim, Yong-Joon;Oh, Young-Taek;Kim, Myung-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.115-123
    • /
    • 2010
  • We present an efficient algorithm for computing the Hausdorff distance between two planar curves. The algorithm is based on an efficient trimming technique that eliminates the curve domains that make no contribution to the final Hausdorff distance. The input curves are first approximated with biarcs within a given error bound in a pre-processing step. Using the biarc approximation, the distance map of an input curve is then approximated and stored into the graphics hardware depth-buffer by rendering the distance maps (represented as circular cones) of the biarcs. We repeat the same procedure for the other input curve. By sampling points on each input curve and reading the distance from the other curve (stored in the hardware depth-buffer), we can easily estimate a lower bound of the Hausdorff distance. Based on the lower bound, the algorithm eliminates redundant curve segments where the exact Hausdorff distance can never be obtained. Finally, we employ a multivariate equation solver to compute the Hausdorff distance efficiently using the remaining curve segments only.

Robust $H_{\infty}$ Control for Bilinear Systems with Parameter Uncertainties via output Feedback

  • Kim, Young-Joong;Lee, Su-Gu;Chang, Sae-Kwon;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.386-391
    • /
    • 2003
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties and exogenous disturbance via output feedback. $H_{\infty}$ control is achieved via separation into a $H_{\infty}$ state feedback control problem and a $H_{\infty}$ state estimation problem. The suitable robust stabilizing output feedback control law can be constructed in term of approximated solution to x-dependent Riccati equation using successive approximation technique. Also, the $H_{\infty}$ filter gain can be constructed in term of solution to algebraic Riccati equation. The output feedback control robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop systems in the face of parameter uncertainties and exogenous disturbance.

  • PDF

A Study on Impact of Generator Maintenance Outage Modeling on Long-term Capacity Expansion Planning (발전기 계획예방정비 모델링 방식이 전원계획 수립에 미치는 영향에 관한 연구)

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.505-511
    • /
    • 2018
  • Long term capacity expansion planning has to be carried out to satisfy pre-defined system reliability criterion. For purpose of assessing system reliability, probabilistic simulation technique has been widely adopted. However, the way how to approximate generator outage, especially maintenance outage, in probabilistic simulation scheme can significantly influence on reliability assessment. Therefore, in this paper, 3 different maintenance approximation methods are applied to investigate the quantitative impact of maintenance approximation method on long term capacity expansion planning.