• Title/Summary/Keyword: approximation technique

Search Result 558, Processing Time 0.026 seconds

Identification of 18 flutter derivatives by covariance driven stochastic subspace method

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.159-178
    • /
    • 2006
  • For the slender and flexible cable supported bridges, identification of all the flutter derivatives for the vertical, lateral and torsional motions is essential for its stability investigation. In all, eighteen flutter derivatives may have to be considered, the identification of which using a three degree-of-freedom elastic suspension system has been a challenging task. In this paper, a system identification technique, known as covariance-driven stochastic subspace identification (COV-SSI) technique, has been utilized to extract the flutter derivatives for a typical bridge deck. This method identifies the stochastic state-space model from the covariances of the output-only (stochastic) data. All the eighteen flutter derivatives have been simultaneously extracted from the output response data obtained from wind tunnel test on a 3-DOF elastically suspended bridge deck section-model. Simplicity in model suspension and measurements of only output responses are additional motivating factors for adopting COV-SSI technique. The identified discrete values of flutter derivatives have been approximated by rational functions.

Measuring Technique for Height of Burst using Stereo-vision Recognition (스테레오 영상인식을 이용한 신관폭발고도 계측기술)

  • Kang, Gyu-Chang;Choi, Ju-Ho;Park, Won-U;Hwang, Ui-Seong;Hong, Seong-Su;Yoo, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.194-203
    • /
    • 1999
  • This paper presents a measuring technique for bursting height of proximity fuses. This technique uses camera calibration to obtain the perspective transformation matrix describing the projection of the world coordinates to image coordinates, and calculates the world coordinates of bursting points from their image coordinates. The surface approximation algorithm by polynomial functions are also implemented.

  • PDF

Study On The Element Free Galerkin Method Using Bubble Packing Technique (버블패킹기법을 이용한 무요소 갤러킨법에 관한 연구)

  • Jeong, Sun-Wan;Choe, Yu-Jin;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2469-2476
    • /
    • 2000
  • The meshing of the domain has long been the major bottleneck in performing the finite element analysis. Research efforts which are so-called meshfree methods have recently been directed towards eliminating or at least easing the requirement for meshing of the domain. In this paper, a new meshfree method for solving nonlinear boundary value problem, based on the bubble packing technique and Delaunay triangle is proposed. The method can be efficiently implemented to the problems with singularity by using formly distributed nodes.

Source Localization Techniques for Magnetoencephalography (MEG)

  • Kwang-Ok An;Chang-Hwan Im;Hyun-Kyo Jung;Yong-Ho Lee;Hyuk-Chan Kwon
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.53-58
    • /
    • 2002
  • In this paper, various aspects in magnetoencephalography (MEG) source localization are studied. To minimize the errors in experimental data, an approximation technique using a polynomial function is proposed. The simulation shows that the proposed technique yields more accurate results. To improve the convergence characteristics in the optimization algorithm, a hybrid algorithm of evolution strategy and sensitivity analysis is applied to the neuromagnetic inverse problem. The effectiveness of the hybrid algorithm is verified by comparison with conventional algorithms. In addition, an artificial neural network (ANN) is applied to find an initial source location quickly and accurately. The simulation indicates that the proposed technique yields more accurate results effectively.

  • PDF

A Sequential Approximate Optimization Technique Using the Previous Response Values (응답량 재사용을 통한 순차 근사최적설계)

  • Hwang Tae-Kyung;Choi Eun-Ho;Lim O-Kaung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.45-52
    • /
    • 2005
  • A general approximate optimization technique by sequential design domain(SDD) did not save response values for getting an approximate function in each step. It has a disadvantage at aspect of an expense. In this paper, previous response values are recycled for constructing an approximate function. For this reason, approximation function is more accurate. Accordingly, even if we did not determine move limit, a system is converged to the optimal design. Size and shape optimization using approximate optimization technique is carried out with SDD. Algorithm executing Pro/Engineer and ANSYS are automatically adopted in the approximate optimization program by SDD. Convergence criterion is defined such that optimal point must be located within SDD during the three steps. The PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information in the direction finding problem and uses the active set strategy.

Analysis of a nonuniform guiding structure by the adaptive finite-difference and singular value decomposition methods

  • Abdolshakoor Tamandani;Mohammad G. H. Alijani
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.704-712
    • /
    • 2023
  • This paper presents a flexible finite-difference technique for analyzing the nonuniform guiding structures. Because the voltage and current variations along the nonuniform structure differ for each segment, this work considers the adaptable discretization steps. This technique increases the accuracy of the final response. Moreover, by applying the singular value decomposition and discarding the nonprincipal singular values, an optimal lower rank approximation of the discretization matrix is obtained. The computational cost of the introduced method is significantly reduced using the optimal discretization matrix. Also, the proposed method can be extended to the nonuniform waveguides. The technique is verified by analyzing several practical transmission lines and waveguides with nonuniform profiles.

An inverse filtering technique for the recursive digital filter model (Recursive 디지털 필터 모델에 대한 역 필터링 기법)

  • Sung-Jin Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.151-158
    • /
    • 2004
  • In this paper, an inverse filtering technique for the digital filter model is proposed. This technique enables us to obtain a stable non-causal m inverse filter by transforming (approximating) it to a causal stable inverse system. In practice, a causal FIR approximation to this inverse filter is proposed. It can be shown that the impulse response of the inverse filter for all-pass systems is simply the mirror image of the impulse response for the system. Specially, due to this symmetric property of the impulse response of all-pass systems, the proposed technique is more useful for all-pass systems than other systems. In order to illustrate the proposed inverse filtering technique, four examples are presented. Two of them are for all-pass filters. The other two examples are for IIR and FIR filters. Also, computer simulations demonstrate that the proposed technique works very well.

  • PDF

Optimization of Reinforced Concrete Piers Based on Efficient Reanalysis Technique (효율적인 재해석 기법에 의한 철근콘크리트 교각의 최적설계)

  • 조효남;민대홍;신만규
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.505-513
    • /
    • 2001
  • In this study, an optimum design algorithm using efficient reanalysis is proposed for seismic design of Reinforced Concrete (RC) piers. The proposed algorithm for optimization of RC piers is based on efficient reanalysis technique. Considering structural behavior of RC piers, the other approximation technique such as artificial constraint deletion is introduced to increase the efficiency of optimization. The efficiency and robustness of the proposed algorithm including the proposed reanalysis technique is demonstrated by comparing it with a conventional optimization algorithm. A few of design examples are optimized to show the applicability of the proposed algorithm.

  • PDF

Analysis of TE-Wave Scattering from Transversal-Shifted Tandem Slits Using Wiener-Hopf Techniques and Fourier Transform Analysis (Wiener-Hopf Technique와 Fourier Transform Analysis를 이용한 병렬 슬릿의 TE파 산란 해석)

  • Seo, Tae-Yoon;Ahn, Sung-Hwan;Lee, Jae-Wook;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.968-977
    • /
    • 2008
  • In this paper, an analysis of TE-wave scattering from transversal-shifted tandem slits using fourier transform analysis and Wiener-Hopf technique are derived and the electrical performances have been compared with a commercially availabel software. In Fourier transform analysis, it is shown that a fast-convergent series solution can be obtained when the distance between the slits is very narrow, while in Wiener-Hopf technique, it is found that the highly-accurate approximation can be obtained when the gap between the slits becomes wider. In addition, this paper has dealt with a good agreement between two analytical solutions.

The Discrete Fourier Transform Using the Complex Approximations of the Ring of Algebraic Integer (복소수의 대수적 정수환 근사화를 이용한 이산 후리에 변환)

  • 김덕현;김재공
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.18-26
    • /
    • 1993
  • This paper presents a multiplier free technique for the complex DFT by rotations and additions based on the complex approximation of the ring of algebraic integers. Speeding-up the computation time and reducing the dynamic range growth has been achieved by the elimination of multiplication. Moreover the DFT of no twiddle factor quantization errors is possible. Numerical examples are given to prove the algorithm and the applicable size of the DFT is 16 has been concluded.

  • PDF