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Source Localization Techniques for Magnetoencephalography
(MEG)

Kwang-Ok An, Chang-Hwan Im, Hyun-Kyo Jung, Yong-Ho Lee and Hyuk-Chan Kwon

Abstract - In this paper, various aspects in magnetoencephalography (MEG) source localization are studied. To minimize the er-
rors in experimental data, an approximation technique using a polynomial function is proposed. The simulation shows that the
proposed technique yields more accurate results. To improve the convergence characteristics in the optimization algorithm, a hy-
brid algorithm of evolution strategy and sensitivity analysis is applied to the neuromagnetic inverse problem. The effectiveness of
the hybrid algorithm is verified by comparison with conventional algorithms. In addition, an artificial neural network (ANN) is
applied to find an initial source location quickly and accurately. The simulation indicates that the proposed technique yields more

accurate results effectively.
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1. Introduction

Yong-Ho Lee and Hyuk-Chan Kwon are with Korea
Research Institute of Standards and Science, Daeieon, Ko-
rea.Recently, extensive research has investigated human
brain activities using source localization with magnetoen-
cephalo-graphy (MEG) and electroencephalography (EEG)
[1, 2]. It is obvious that magnetic field (obtained by MEG)
caused by current dipole sources is less affected by proper-
ties of head tissue than the electric potential (obtained by
EEG). Another advantage of MEG compared to EEG is
that the measured quantity is a field strength rather than a
potential value; thus, the MEG is independent of the choice
of a reference [3]. For these reasons, although the EEG has
been widely used for current practical applications, further
research is focused on the MEG rather than the EEG.

The MEG source localization is a kind of inverse prob-
lem with considerably high non-linearity. Usually, there
are two different approaches to solve the “neuromagnetic”
inverse problem. The first is to determine spatial parame-
ters of a small number of dipoles by using optimization
algorithms {4, 5]. The other is to determine the distribution
of the currents in a brain [6, 7]. Because the former is
thought to be more general and practical than the latter, the
dipole source localization will be dealt with in this paper.

The most important subject in MEG source localization
is to find current dipole sources more accurately with less
effort. However, some problems remain to be solved. The
first is that experimental data contain a lot of erroneous
information due to noises from the external magnetic en-
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vironment or the Superconducting Quantum Interference
Device (SQUID) system itself. Such useless or erroneous
information in the experimental data complicates estima-
tion of the exact current dipole locations. To eliminate
noise, preliminary handlings of the experimental data
should be introduced in the signal processing stage [8, 9].
However, such algorithms usually fail to achieve their
purpose ideally, leave distortion in the data, or even intro-
duce new distortions [10]. The approach that will be intro-
duced in this paper is rather different from the convention
ones. The main objective is to compensate for the errone-
ous information rather than to remove the noisy signals.
The second subject lies in the use of optimization algo-
rithms. In the MEG source localizing process, few meas-
uring points are used for the reconstruction of the dipole
sources. Since the given data contains very limited infor-
mation, the inverse process becomes ill-posed. Therefore,
obtaining exact solutions is difficult because the objective
function is very complex and always has many local op-
tima. To solve the problem, various optimization tech-
niques have been adopted. Generally, there are two kinds
of optimization algorithms: deterministic algorithms and
stochastic algorithms. In case of the deterministic algo-
rithms, although the convergence rate is usually very fast
throughout the whole process, the deterministic algorithm
is apt to converge to a local optimum for such a complex
problem. Stochastic algorithms, such as genetic algorithm
(GA) and simulated annealing (SA), which have been usu-
ally used for dipole source localization, take considerable
time to converge to a global optimum [11]. Consequently,
to obtain dipole source location accurately with less effort,
some improvements in conventional algorithms are needed.
In addition, a good estimation of the initial value should be
implemented to reduce the computational cost.
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In this paper, an approximation technique using poly-
nomial functions is proposed to reduce the errors in the
experimental data. To improve the convergence character-
istics in the optimization algorithms, a hybrid algorithm of
evolution strategy (ES) and sensitivity analysis is applied.
To estimate the initial dipole location and accelerate the
convergence rate, an artificial neural network (ANN) is
applied prior to the inverse procedure. The simulation re-
sults will prove that the proposed localization processes
yield more accurate results effectively.

2. MEG Dipole Source Localization
2.1 MEG System

The human brain model is assumed to be a homogene-
ous conducting sphere. The assumption is usually
acceptable except in some special cases. The magnetic
field due to the current dipole is measured outside the
model. Because the amplitude of the magnetic field is
extremely small (about eight orders of magnitude smaller
than the earth’s magnetic field), this amplitude calls for not
only very sensitive transducers, but also effective
compensation and shielding against all sort of disturbances.
Presently, such fields are mostly measured by low-noise
SQUID systems. The SQUID system used for the
experiment is shown in Fig. 1. Forty planar-type sensors
that are composed of twenty x-directional sensors and twenty
y-directional sensors can measure the spatial differences of
tangential magnetic fields on the brain surface [12].
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Fig. 1 Arrangement of forty SQUID sensors
2.2 Forward Solutions

As an approximation, the human head can be modeled
by homogeneous conducting sphere. For such a model, the
volume conductor effects can be expressed as an analytic
formula. The magnetic field at a sensing position can be
calculated by

N ‘ =7 " =7 =
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4 i=1 Fi

where

— —r

a=r-r,

Fy =] a5

VF, = (7| @] +)a;| ", -7 +2d; + 2F)F
@ +2F +|a|a; PR

and where r represents the position of sensors, r’the
position of i-th dipole, N the number of the dipoles, and
Q, the i-th dipole moment [2].

2.3 Reduction of Errors in Experimental Data

Generally, the magnetic source imaging (MSI) in neu-
romagnetic measurements includes a lot of errors. The er-
rors may originate from the noise of the SQUID system
itself or faults in handling the instruments during the ex-
periment. The errors make the experimental data different
from forward solutions even with the same dipole locations
Fig. 2 and Fig. 3 show the difference between the forward
solutions and the experimental data. We can see that the
errors are somewhat severe at some regions marked by cir-
cles.
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Fig. 2 Magnetic field distribution of x-directional sensors:
(a) Forward solution and (b) Experimental data
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(b)
Fig. 3 Magnetic field distribution of y-directional sensors:
(a) Forward solution and (b) Experimental data

In this paper, a polynomial function approximation is
used to reduce the differences between the experimental
field distributions and the forward solutions. To determine
the order of the polynomials, the differences in coefficients
of the polynomials between the experimental and the
forward solutions are calculated for four types. Fig. 4
shows the results in case of second-, third-, fourth-, and
fifth-order polynomials.
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Fig. 4 The difference between the experimental field dis-
tribution and the forward solutions, according to the
order of the polynomials

In case of second- and third-order polynomials, both
x-directional sensors and y-directional sensors obtain very
small differences. However, the second-order polynomial
approximation represents the different distribution with
forward solutions. Fig. 5 shows forward solution after sec-
ond-order polynomial approximation,

Therefore, we used a third-order polynomial function as
Eq. (2). It is found that the third-order polynomial function
has the best characteristics for representing the magnetic
field distribution induced by a ‘single’ dipole source, Nu-
merous simulations verify that the polynomial function can
represent the main feature of the distribution without losing
the peak values or peak positions.

Jx,y)=ay+a,x+ayy +a3x2 +a,xy +¢15y2
+a6x3+a7x2y+a8xy2 -I»agy3 2)
wre the coefficients of the polynomials are obtained by
ng the least square method, Then, the objective function
he inverse problem can be represented by the difference
the coefficients of the polynominal between the
rimental and the calculated values.

(b)
Fig, 5 Forward solutions after approximation:
(a) x-directional sensors and (b} y-directional sensors

After using polynomial function approximation, the ef-
rors in the experimental data are reduced considerably. The
comparison of the forward and the experimental data after
the approximation is shown in Fig. 6 and Fig. 7.
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Fig, 6 Magnetic field distribution of x-directional sensors:
{a) Forward solution after approximation and
(b) Experimental data after approximation
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Fig. 7 Magnetic field distribution of y-directional sensors:
(a) Forward solution after approximation and
(b) Experimental data after approximation

2.4 Optimization Algorithm

1) Evolution Strategy

Among the several stochastic methods, the ES uses the
principle of organic evolution as the rule to seek the optimal
condition. The ES is widely used because it can find a global
optimum and the structure of the algorithm is very simple [13
- 15].

To apply the ES, the objective function is defined as

1 9
OF = EZ(% —a,)? 3)
i=0

where [ means the i-th coefficient, a,; the coefficients of
original experiment data, and a; the coefficients of the
calculated data.

2) Sensitivity Analysis

Sensitivity analysis is widely used because it can deal
with a lot of design variables simultaneously and the con-
vergence rate is very fast [16]. The objective function for
the sensitivity analysis is the same as in Eq. (3).

3) Hybrid Method

When using the ES, the convergence rate is very fast in
the beginning step. However, as the solution approaches an
optimum, the rate becomes slower and slower. On the other
hand, the convergence rate of sensitivity analysis is very
fast throughout the whole process. However, if sensitivity
analysis is used solely, it is apt to converge to a local opti-
mum.

Therefore, the hybrid method of two algorithms is used
for dipole source localization. The ES is used for finding
an outline of the dipole location near an optimum, and sen-
sitivity analysis is used for finding the exact location of the
dipole.

2.5 Application of Artificial Neural Network

As stated previously, the hybrid algorithm is used in the
inverse procedure. In applying the hybrid algorithm, a
good estimation of the initial dipole location improves the
computational cost of the inverse algorithm. To estimate

the initial dipole location, an ANN is applied. In the case of
a single dipole, the patterns of the magnetic field distribu-
tion are very simple. Therefore, the source location can be
found using only peak positions and values.

The structure of the ANN is roughly shown in Fig. 8.

Input p;represents the peak positions and values of mag-
netic flux density in the sensing plane. Output g, represents
the position vector ( x,y,z ) of an equivalent current dipole.
The ANN consists of two layers: the first layer is
composed of sixty neurons, and the second layer is
composed of three neurons.

Input Layer1 Layer2 Output
J41 2 21— a
P2

Z D a

P3 N <.

p R W z s Z — dy

Fig. 8 The structure of the ANN

Prior to the application to real measurements, the ANN
is trained to estimate parameters of the equivalent current
dipole with a supervised training procedure. First, 550
cases with random dipole positions and directional vectors
are simulated. Then, the peak positions and values of
magnetic field distribution are found in the case of x- and
y-directional sensors. Then, by using dipole parameters and
peak values, the ANN is trained.

3. Simulation Results

To verify the effectiveness of the proposed methods, its
performance is compared with that of conventional ones.
The head model is assumed to be spherically symmetric
conductor with an outer radius of 85 mm. The magnetic
field data are measured by forty SQUID planar gradiom-
eters, which are shown in Fig. 1.

3.1 Error Reduction of Experimental Data

Table I shows the comparison of accuracy of the before-
and after-approximation process. Two cases use the ES
algorithm when same terminal condition is applied; the
value of the objective function is 0.99. The units of x,y,z,
and r are mm, and those of 8 and ¢ are rad. The values in
parentheses mean the differences between exact and calcu-
lated data. The table shows that the result after polynomial
function approximation is more accurate than that before
the approximation, especially in the value of z.
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Table 1 Comparison of Results between Before and fter

Approximation

variables before approximation after approximation
x [mm] 13.3 (1.0) 13.2(0.9)

y [mm] 49.9 (0.9) 48.2 (0.8)

z [mm] 34.7 (4.5) 40.1 (0.9)

r [mm] 1.01 (0.02) 0.89 (0.1)

0 [rad] 0.03 (0.13) 0.87 (0.71)

¢ [rad) -0.42 (0.13) 0.37 (0.66)

3.2 Artificial Neural Network

Table II shows the capability of the ANN to estimate
initial source location. By using just peak value and peak
positions of magnetic field distribution in a sensing plane,
the initial source location can be estimated accurately.

Table 2 Comparison of Exact Position and Estimated Position

X y b4
Exact position 12.3 49.0 39.2
Estimated position 12.7 55.3 38.0

3.3 Optimization Algorithm

Table 3 compares the four optimization algorithms in
terms of the total iteration number and accuracy of inverse
results. The results verify that the hybrid algorithm is more
effective than the ES or sensitivity analysis and the con-
vergence rate can be accelerated by estimating the initial
location using an ANN.

Table 3 Comparison of Four Optimization Algorithms

#of

* Y z r o iteration

Exact 123 490 392 099 016 -03
ES 132 482 401 089 087 037 1830
Sen. -88 497 172 093 056 0.64 464
Hybrid 123 486 402 087 085 0.13 1017

ANN& 195 489 385 092 009 -04 406
hybrid

4. Conclusions

This paper introduces techniques for magnetoencephalo
-graphy source localization. To reduce errors in experi-
mental data, a polynomial function approximation was ap-
plied to the pre-process. The ES, sensitivity analysis, and
the hybrid algorithm for MEG source localization were
compared. In addition, an ANN is applied to find the reli-
able source location quickly. Simulation results verify the
efficiency and validity of the proposed processes.
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