DOI QR코드

DOI QR Code

Analysis of a nonuniform guiding structure by the adaptive finite-difference and singular value decomposition methods

  • Abdolshakoor Tamandani (Faculty of Engineering, Velayat University) ;
  • Mohammad G. H. Alijani (Electrical Department, Ferdowsi University of Mashhad)
  • Received : 2022.03.11
  • Accepted : 2022.11.08
  • Published : 2023.08.10

Abstract

This paper presents a flexible finite-difference technique for analyzing the nonuniform guiding structures. Because the voltage and current variations along the nonuniform structure differ for each segment, this work considers the adaptable discretization steps. This technique increases the accuracy of the final response. Moreover, by applying the singular value decomposition and discarding the nonprincipal singular values, an optimal lower rank approximation of the discretization matrix is obtained. The computational cost of the introduced method is significantly reduced using the optimal discretization matrix. Also, the proposed method can be extended to the nonuniform waveguides. The technique is verified by analyzing several practical transmission lines and waveguides with nonuniform profiles.

Keywords

References

  1. H. Cho, M. Go, Y. Jo, and H. Park, Oscillator with high harmonic suppression using split quarterwave microstrip resonator, ETRI J. 33 (2011), 125-127.  https://doi.org/10.4218/etrij.11.0210.0158
  2. M. Fernandez, S. Ver Hoeye, C. Vazquez, L. Alonso Gonzalez, and F. Las-Heras, On the design of broadband hybrid amplifiers using nonuniform transmission lines as impedance matching networks, IEEE Access 7 (2019), 19670-19677.  https://doi.org/10.1109/ACCESS.2019.2897290
  3. M. Adnan and E. Afshari, Efficient microwave and millimeter-wave frequency multipliers using nonlinear transmission lines in CMOS technology, IEEE Trans. Microw. Theory Technique 63 (2015), no. 9, 2889-2896.  https://doi.org/10.1109/TMTT.2015.2459688
  4. P. Rulikowski and J. Barrett, Ultra-wideband pulse shaping using Lossy and dispersive nonuniform transmission lines, IEEE Trans. Microw. Theory Techniques 59 (2011), no. 10, 2431-2440.  https://doi.org/10.1109/TMTT.2011.2164090
  5. A. Cheldavi and D. Ansari, Efficient frequency-domain modelling and simulation of nonuniform coupled transmission lines: Application in transient analysis of VLSI circuits, Can. J. Elect. Comput. Eng. 29 (2004), no. 3, 167-177.  https://doi.org/10.1109/CJECE.2004.1532520
  6. R. Wu and Q.-X. Chu, Broadband multimode antenna and its array for wireless communication base stations, ETRI J. 41 (2019), 167-175.  https://doi.org/10.4218/etrij.2018-0187
  7. F. Khajeh-Khalili and M. A. Honarvar, Novel tunable peacelogo planar metamaterial unit-cell for millimeter-wave applications, ETRI J. 40 (2018), 389-395.  https://doi.org/10.4218/etrij.2018-0013
  8. S. H. Kazemi, M. Ghanbarpour, A. Zahedi, and M. Hayati, A microstrip lowpass filter with sharp roll-off using arrow-shaped resonators and high-impedance open stubs, AEU-Int. J. Electron. C. 136 (2021), 1-8. 
  9. S. M. S. N. Hosseini, R. Zaker, and K. Monfaredi, A microstrip folded compact wideband band-pass filter with wide upper stopband, ETRI J. 43 (2021), 957-965.  https://doi.org/10.4218/etrij.2020-0262
  10. F. Vega, F. Rachidi, N. Mora, N. Pena, and F. Roman, Design, realization, and experimental test of a coaxial exponential transmission line adaptor for a half-impulse radiating antenna, IEEE Trans. Plasma Sci. 41 (2013), no. 1, 173-181.  https://doi.org/10.1109/TPS.2012.2230340
  11. K. Rabaani, M. Added, N. Boulejfen, A. B. Kouki, and F. M. Ghannouchi, Chebyshev polynomials for the numerical modeling of non-uniform substrate integrated waveguides, Int. J. Numer. Modell. Electron. Netw. Devices Fields 34 (2020), no. 3, 1-15.  https://doi.org/10.1002/jnm.2853
  12. A. Cheldavi, Exact analysis of coupled nonuniform transmission lines with exponential power law characteristic impedance, IEEE Trans. Microw. Theory Techniques 49 (2001), no. 1, 197-199.  https://doi.org/10.1109/22.900008
  13. A. Cheldavi, Analysis of coupled Hermite transmission lines, IEE Proc. Microw. Antennas Propag. 150 (2003), no. 4, 279-284.  https://doi.org/10.1049/ip-map:20030541
  14. D. M. Pozar, Microwave engineering, John Wiley & Sons, 2011. 
  15. S. C. Chapra, Applied numerical methods; with MATLAB for engineers and scientists, MC Graw Hill, 2015. 
  16. M. N. O. Sadiku, Numerical techniques in electromagnetics with MATLAB, CRC Press, 2018. 
  17. K. Kanatani, Linear algebra for pattern processing: Projection, singular value decomposition, and pseudoinverse, Morgan & Claypool, 2021. 
  18. A. Gilat and V. Subramaniam, Numerical methods for engineers and scientists, John Wiley & Sons, 2014. 
  19. P. A. Rizzi, Microwave engineering; passive circuits, Prentice-Hall, 1988. 
  20. C. R. Paul, Analysis of multiconductor transmission lines, 2nd ed., John Wiley & Sons, 2008. 
  21. K. A. Milton and J. Schwinger, Electromagnetic radiation: Variational methods, waveguides and accelerators, Springer, 2006. 
  22. L. L. Grigsby, The electric power engineering handbook; electric power generation, transmission, and distribution, CRC Press, 2012. 
  23. J. A. B. Faria, The transfer matrix method: Analysis of nonuniform multiport systems, IEEE Access 8 (2020), 23650-23662.  https://doi.org/10.1109/ACCESS.2020.2968575
  24. M. Khalaj-Amirhosseini and S. A. Akbarzadeh-Jahromi, To optimally design microstrip nonuniform transmission lines as lowpass filters, J. Telecommun. 2 (2010), no. 2, 139-142. 
  25. S. Das and S. K. Chowdhury, Design simulation and fabrication of stepped impedance microstrip line low pass filter for S-band application using IE3D and MATLAB, Int. J. Electron. Commun. Technol. 3 (2012), no. 1, 98-100. 
  26. M. Alijani Ghadikolae and M. H. Neshati, Development an accurate and simple dispersion analysis of TE10 mode of substrate integrated waveguide, (21st Iranian conference on electrical engineering (ICEE), Mashhad, Iran), 2013, pp. 1-4. 
  27. G. Strang, Introduction to linear algebra, Cambridge Press, 2016.