• Title/Summary/Keyword: approximate

Search Result 4,330, Processing Time 0.026 seconds

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1131-1141
    • /
    • 2010
  • We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner.

SOME DESCRIPTION OF ESSENTIAL STRUCTURED APPROXIMATE AND DEFECT PSEUDOSPECTRUM

  • Ammar, Aymen;Jeribi, Aref;Mahfoudhi, Kamel
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.673-697
    • /
    • 2020
  • In this paper, we introduce and study the structured essential approximate and defect pseudospectrum of closed, densely defined linear operators in a Banach space. Beside that, we discuss some results of stability and some properties of these essential pseudospectra. Finally, we will apply the results described above to investigate the essential approximate and defect pseudospectra of the following integro-differential transport operator.

LOCAL APPROXIMATE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION POPULATION MODELS

  • Yang, Guangchong;Chen, Xia;Xiao, Lan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.83-92
    • /
    • 2021
  • This paper studies approximate solutions for a class of nonlinear diffusion population models. Our methods are to use the fundamental solution of heat equations to construct integral forms of the models and the well-known Banach compression map theorem to prove the existence of positive solutions of integral equations. Non-steady-state local approximate solutions for suitable harvest functions are obtained by utilizing the approximation theorem of multivariate continuous functions.

Finding Approximate Covers of Strings (문자열의 근사커버 찾기)

  • Sim, Jeong-Seop;Park, Kun-Soo;Kim, Sung-Ryul;Lee, Jee-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.1
    • /
    • pp.16-21
    • /
    • 2002
  • Repetitive strings have been studied in such diverse fields as molecular biology data compression etc. Some important regularities that have been studied are perods, covers seeds and squares. A natural extension of the repetition problems is to allow errors. Among the four notions above aproximate squares and approximate periodes have been studied. In this paper, we introduce the notion of approximate covers which is an approximate version of covers. Given two strings P(|P|=m) and T(|T|=n) we propose and algorithm with finds the minimum distance t such that P is a t-approximate cover of T. The algorithm take O(m,n) time for the edit distance and $O(mn^2)$ time of finding a string which is an approximate cover of T is minimum distance is NP-complete.

A Comparative Study of Approximation Techniques on Design Optimization of a FPSO Riser Support Structure (FPSO Riser 지지구조의 설계최적화에 대한 근사화 기법의 비교 연구)

  • Shim, Chun-Sik;Song, Chang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • The paper deals with the comparative study of design optimization based on various approximation techniques in strength design of riser support structure installed on floating production storage and offloading unit(FPSO) using offshore operation loading conditions. The design optimization problem is formulated such that structural member sizing variables are determined by minimizing the weight of riser support structure subject to the constraints of structural strength in terms of loading conditions. The approximation techniques used in the comparative study are response surface method based sequential approximate optimization(RBSAO), Kriging based sequential approximate optimization(KBSAO), and the enhanced moving least squares method(MLSM) based approximate optimization such as CF(constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization(PIDO) tools are employed for the applications of RBSAO and KBSAO. The enhanced MLSM based approximate optimization techniques are newly developed to ensure the constraint feasibility. In the context of numerical performances such as design solution and computational cost, the solution results from approximate techniques based design optimization are compared to actual non-approximate design optimization.

An Application of Homogenization Theory to the Coarse-Mesh Nodal Calculation of PWRs (PWR 소격격자 Nodal 계산에의 균질화 이론 적용)

  • Myung Hyun Kim;Jonghwa Chang;Kap Suk Moon;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.202-216
    • /
    • 1984
  • The success of coarse-mesh nodal solution methods provides strong motivation for finding homogenized parameters which, when used in global nodal calculation, will reproduce exactly all average nodal reaction rates for large nodes. Two approximate theories for finding these ideal parameters, namely, simplified equivalence theory and approximate node equivalence theory, are described herein and then applied to the PWR benchmark problem. Nodal code, ANM, is used for the global calculation as well as for the homogenization calculation. From the comparative analysis, it is recommended that homogenization be carried out only for the unique type of fuel assemblies and for core boundary color-sets. The use of approximate homogenized cross-sections and approximate discontinuity factors predicts nodal powers with maximum error of 0.8% and criticality within 0.1% error relative to the fine-mesh KIDD calculations.

  • PDF

Approximate Design Optimization of Active Type Desk Support Frame for Float-over Installation Using Meta-model (메타모델을 이용한 플로트오버 설치 작업용 능동형 갑판지지프레임의 근사설계최적화)

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.31-43
    • /
    • 2021
  • In this study, approximate design optimization using various meta-models was performed for the structural design of active type deck support frame. The active type deck support frame was newly developed to facilitate both transportation and installation of 20,000 ton class offshore plant topside. Structural analysis was carried out using the finite element method to evaluate the strength performance of the active type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions that were regulated in ship classification organization. The approximate optimum design problem based on meta-model was formulated such that thickness sizing variables of main structure members were determined by achieving the minimum weight of the active type deck support frame subject to the strength performance constraints. The meta-models used in the approximate design optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. The results from approximate design optimization were compared to actual non-approximate design optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate design optimization represented the most pertinent optimum design results for the structure design of the active type deck support frame.

CONVERGENCE OF APPROXIMATE SOLUTIONS TO SCALAR CONSERVATION LAWS BY DEGENERATE DIFFUSION

  • Hwang, Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.145-155
    • /
    • 2007
  • In this paper, we show the convergence of approximate solutions to the convective porous media equation using methodology developed in [8]. First, we obtain the approximate transport equation for the given convective porous media equation. Then using the averaging lemma, we obtain the convergence.

Approximate Linearization of Nonlinear Systems (비선형 시스템의 근사 선형화)

  • 남광희;이균경;탁민제
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.690-695
    • /
    • 1991
  • The ability to linearize a nonlinear system by feedback and coordinate change reduces to finding an integrating factor for a one-form which is determined from the system dynamics. Utilizing Taylor series expansion of this one-form, we characterize approximate linearizabilitu. A constructive method is derived for approximate linearization up to order 2.

  • PDF