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CONVERGENCE OF APPROXIMATE SOLUTIONS TO
SCALAR CONSERVATION LAWS BY DEGENERATE
DIFFUSION

SEok HwaNG

ABSTRACT. In this paper, we show the convergence of approximate so-
lutions to the convective porous media equation using methodology de-
veloped in [8]. First, we obtain the approximate transport equation for
the given convective porous media equation. Then using the averaging
lemma, we obtain the convergence.

1. Introduction

For scalar multi-dimensional conservation laws

d
du+y 0 Fi(u)=0, zeR%teRY,
(1.1) =
w(z,0) = up(z), =€ R
there are available two equivalent notions for weak solutions: the Kruzhkov
entropy solution [9], stating that u satisfies the entropy inequalities

(1.2) On(u) + divg(u) <0 in D',

for any entropy pair 7 — g with 9 convex, and the kinetic formulation of Lions-
Perthame-Tadmor [10]. Both concepts lead to uniqueness, stability theorems
and error estimates for approximate entropy solutions [9, 16].

Consider the following approximation of (1.1) obtained by adding a porous
media operator to the right hand side of (1.1):

d d
Bu+ Y O, Fi(u) =€ Opo, (lu™u), z R, t>0,

Jj=1 j=1
u(x,()) :U0($), z ERdv

(1.3)

where m > 1 and a; = F]f.
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This equation (1.3) and its variants model degenerate diffusion-convection
motions of ideal fluids and arise in a wide variety of important applications,
including two phase flows in porous media (see, for example, [3] and the refer-
ences cited therein) and sedimentation-consolidation process (see, for example,
[1] and the reference cited therein). A well-posedness theory for (1.3) and its
variants is relatively well understood; see [24], [15], [2].

In particular, in [15], the existence theory of travelling waves solution to (1.3)
has been carried out revealing the advantage of using the degenerate diffusive
approximation (1.3) with respect to the usual one. Indeed, the latter method
provides an approximating solutions which, in some situations, coincides with
the exact solution of (1.1) outside a compact set (in the space variable, for
fixed time), while the perturbation effects of the usual viscosity always yield to
undesired modifications of far fields (for numerical applications in this direction,
see [12]).

In this paper, our main object is to show that the solutions u® of (1.3)
converge in the strong topology to the entropy solution of (1.1). Convergence
of (1.3) has been established in the 1-dimensional case by Marcati [11] using
the compensated compactness. The vanishing viscosity limit was studied by
several authors in the special case of a linear (and therefore non-degenerate)
diffusion term which corresponds to m = 1; this activity started with Oleinik’s
[14] and Kruzhkov’s [9] works. For different kind of viscosity coeflicients, see
[12], [13]. In this paper, for multi-dimensional case, we prove the convergence
of the approximate solutions »° to the entropy solution of (1.1) using different
methodology developed in [8].

This methodology was developed to understand the compactness of approxi-
mate solutions {1} bounded in some LP-norm (p > 1) which satisfy the entropy
dissipation measure in the sense

(1.4) Bn(u®) + divg{u®)  is precompact in H l';i,m’t .

The compactness of u® which satisfy (1.4) has been proved in one-space dimen-
sion in both the L> and LP stability settings by Tartar [22] and Schonbek [20]
(see [19] for a simplified proof using singular entropies and [23] for an analysis
of the compensated compactness bracket in multi-d). For multi-dimensional
conservation laws, convergence of approximate solutions is usually deduced by
using a framework of DiPerna [4] and Szepessy [21]. The argument hinges on
showing that a Young-measure solution (with certain regularity in time) that
satisfies (1.2) for all convex 7 and is a Dirac mass at ¢t = 0 is in fact a regu-
lar weak solution. It yields compactness for bounded families of approximate
entropy solutions, i.e. approximate solutions {u®} that satisfy the dissipation
structure

(1.5) On(u®) + divg(u®) < PE(uf)

with P*(u®) - 0in D’ ase — 0.
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An alternative compactness framework is proposed in Lions-Perthame-Tad-
mor [10] by means of the kinetic formulation and averaging lemmas (e.g. [17,
18]). The framework in [10] is developed for approximations that still satisfy
(1.5). Nevertheless, as we will see, it can be easily adapted to apply to the
structure (1.4).

‘This methodology successfully applied to the relaxation approximation of
Jin-Xin type, diffusion-dispersion approximation, kinetic models of BGK type,
and singularly perturbed higher order partial differential equations, see [6], [7],
8]

Main idea of this methodology is following: First turn the entropy pro-
duction into a kinetic form using duality (see section 3) and it results to an
approximate transport equation,

d
(1.6) 8" +a(8) - VXE = B, (85 + 0cg5) + Oem®,
j=1
for the function x* = 1(u®(z,t),£), where

]l()<§<u if u > 0
(1.7) 1(u,&) =<0 ifu=0
—]1u<€<0 ifu<O

is the usual Maxwellian associated with the kinetic formulation of scalar con-
servation laws, g5, g5 — 0 in L*(R? x Rt x R) and m¢ is uniformly bounded
in positive measures. Convergence is then obtained via the averaging lemma
in [18]. In the limit € — 0, x* — 1(u, &) =: x which satisfies

(1.8) dix+a€) - Vx=08m in D,

with m a positive bounded measure. We conclude that u an entropy solution.

From physical point of view, this result describes the behavior of the solution
of the convective porous media equation in terms of the solution to the related
conservation law, which the permeability of the medium tends to zero.

This paper is organized in this way: In section 2, we establish the finite
propagation of speed and a priori estimates for approximate solutions. Then
section 3 shows the convergence of approximate solutions to the unique entropy
solution.

2. Finite propagation speed and a priori estimates

In this section we obtain the finite speed of propagation and a priori esti-
mates for approximate solutions.

Proposition 2.1. Let m > 1, > 0 be given. Let F;(u) € C*(R),j =1,...,d.
If u§(x) is a continuous function with compact support, then there exists a
Sfunction (€ : R — [0, 00] such that for allt > 0,

supp(u®(-,t)) C {x : |2] < ()}
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Proof. Let T > 0 and u® = u. Define v and L[z] by
m

- m—1
V=g |ul
and
d d
Liz] = 8z + ZFJ((u)c'?zjz - EZ(@WZ)2 - Z e(m — 1)20z,4, 2.
j=1 j=1 j=1
Note that L{v] = 0 in the sense of distribution.
If we set
O(z,t) = ¢(t)(1 — Mi)Jr z € Rt € [0,T]
y ¢(t) 3 2 bl ¥
we can determine a positive function ¢(t) so that
(2.1) v(z,t) < O(z, t).

Indeed, for all z € {z € R? : |z|? < ¢(t)}, we have

d of?
L[o] = ¢/(t) - ZFJ'(u)xJ — de|z|® + 2e(m — 1)¢>(t)( - m)

> ¢'(t) — 2K/ 9(t) — 4e4(2),

where K = K(T') > 0 is determined in the following way:
It is well-known that

|u(z,t)| < luoll poo(rey a-€. in R? x [0, 00].
Hence, it is natural to assume

K= max sup{|Fj(w): lul < |luoll1}
and denote by

¢o = sup{|z| : = € supp(uo)}.
Then if we choose ¢(t) as the solution of the following initial value problem

¢ (t) — 2K /(t) — 4ep(t) =0

¢(0) = ¢07
we obtain L[§] > 0. By the maximum principle, this implies that (2.1) holds.
O

Now we obtain some estimates on approximate solutions u® of (1.3).

Lemma 2.2. Suppose that F; € C'(R), j = 1,...,d and assume that the
initial data u(z) is continuous and has a compact support, then we have

(2.2) sup [u*(z, t)| < sup |ug(z)|

T,
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If in addition ug € L?(R%), then

(2.3) Sup [[wC )2 ey < lug (@)l L2 (re

and for all T > 0,

(u)emZ[memxtwwaummdmmmmmmmy

Proof. Let u(z,t) = u®(z,t). Let k > 0 be given to be determined later. First,
we multiply the equation (1.3) by the test function (|u(z,t)] — k)T. In the

interior of {(z,t) : u(z,t) > k}, we have

( 3tu+ 'u— Z@zJF

Z‘Bt U— +ZazJQ]

z
M“
=

3
&
&

(2.5)
=1

= aZam]( u — k)( m)m1> —EZuzJ

J=1

.

= &€m Z ('?zj ((U - k)um_lumj) —em Z um_l(uxj)2,
i=1

Jj=1

where @ = (u — k)F(u).

Repeating the same calculus on the interior of {(z,t)

s u(z,t) < —k}, we

obtain
By (u +ZaIJQJ, u)
(2.6) =t
—amZB (|u| ) [uf™ lu%) —sm2|u|m (i, )?
where

me) = 5[l ~ £,

Qjx(w) = (lul — k)T Fj(u).

Integrating on {(z,t) : |u(z,t)| > k} and using Proposition 2.1, we get

@2.7) dii / e (u(, 8))da: = —smz / ™ ()2

{lul>k}
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An integration on ¢ gives

(2.8) /1mm@mm
= / ik (up(z d:c—st/ /]u[>k} Ju|™( Uz) dzdt.

Now, to show (2.2), we choose

k = sup |up(z)],
x

then we have
me(u(z,t)) < ne(uo(x)) =0, ae. in RY x (0,T),

that is (2.2).
Finally, if we choose k = 0, we have n;(u) = u? which shows (2.3) and
(2.4). O

3. Convergence

In preparation, recall that 7-g with ¢ = (g;(u));=1,...4 is an entropy-entropy
flux pair if ¢; = a;n’. Such pairs describe the nonlinear structure of (1.1) and
are represented in terms of the kernel 1(u, ) by the formulas

n(u) - 7(0) = /5 Lo, € (E)dE
(3.1)
45(u) ~ 4;(0) = /E 1u, €)a; () (€)dE ,

where

]1()<E<u fu>0
(3.2) 1,(¢) = 1(u, &) = { 0 if u=0
—‘]1u<€<0 lf u < O

Remark 3.1. Let 1(u,£) be the entropy kernel. Since u® € L®(R*; L2(R%)) we
have for K compact subset of R? x R

/K (/|]1(UE:§)Id§)2da:dt=/K|u5|2dzdt§0

and thus 1(u,€) € L2 _(R? x Rt; L*(R)).

Also, we use the limiting case of the averaging lemma proved in Perthame-
Souganidis [18], see also [17] :
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Theorem 3.2. Let {fn},{gin} be two sequences of solutions to the transport
equation

d
(33) atfn + a(f) . men - 6taé:go,n + Eaziaggi,n
i=1
where k € N. Assume that a(§) € C(R) satisfies the non-degeneracy condi-
tion: for R >0

(3.4)
a(§)

. -1
w(B) = sup / (|a+——————u—)|2+1) dé -0, as B — 0.
aeRwesd—1 J{|€|<R) B
If {fu} is bounded in LY(R? x R* x R), for some 1 < ¢ < 0o, and {g;n} is
precompact in LI(R? x Rt x R), then the average

/ Y(E) fult, x,€)dE s precompact in LY(R? x RT),
R

for any ¢ € CP(R).

Remark 3.3. 1. The non-degeneracy condition (3.4) is equivalent to for all
R>0

(3.5) meas{f € Bg |a+a(f) - w=0}=0, VaeR, wes?,

where Br = {|¢| < R}. The condition (3.5) can be interpreted geometrically,
and means that the curve £ — a(¢) - w + « is not locally contained in any
hyperplane.

2. An assumption on the behavior of a(€) is necessary; there would no
improvement of regularity in the case a(£) = constant.

3. By using cut-off functions, it is easy to show a variant of theorem 3.2
stating that under the same hypotheses if {f,} is bounded in L} (R? x R x
R) and {g;,} are precompact in L] (R¢ x R* x R) then the averages are

loc

precompact in L (R? x R*) for any ¢ € CZ°(R).

loc
Now, we state the main theorem of this paper:
Theorem 3.4. Suppose uo(z) € L*(R?) N L®(R?) and F; are C'-functions

that satisfy the nondegeneracy condition (3.5) (or (3.4)). Then solutions u® of
(1.3) converge to a function u in L _(R% xR*), 1 < p < oo and the limiting u

loc
is the unique Kruzhkov entropy solution of (1.1).

Proof. We multiply (1.3) by n/(u®) and obtain
On(u®) + divg(u®)
(3.6) d d
=&Y O, (' (u)mlus | 0p,u) — en” (uf) D mlut ™ (B, ul ).

=1 j=1
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Let p(z,t) € C(R? x RT) and let n € CX(R) be viewed as a test function.
By introducing the indicator function 1(u¢, &), we have

d

6n -/ (10500060, + 3 F (O 0z, 0(a,0) ) (€ dedads

s 7=1

d
-—/ Z (€m|u5|m_13rju5>77’(u5)8,].cp(:v,t) dxdt
z,t j=1

d

_ / ") 3 (emlu ™ (80, u°)? ) o(2, ©) dadt

Jj=1

which is viewed as describing the action on tensor products ¢ ® 7.
We proceed to interpret (3.7) as an equation in D, , .. Let

Xe(z’ t’ 5) = ll(ue?g)
Hi(z,t) = em|uf|™ 10y, u’
(38) .
G*(z,t) =emy_ |us|™ "} (0g,uf)” .
7j=1

H:, G €, Li, (R x RY) from lemma 2.2. We wish to define 6(u® — ¢)G* as a
distribution in D, , . by its action on tensor products

(3.9) (0(u® =G, p@7) = / t G*(z,t)e(z, t)n (u*(z, t))dzdt .

This follows from the Schwartz kernel theorem (e.g. [5, Sec 5.2]) as follows:
Define the linear map

K:C®R)—-D'R*xRT) by Ki=G(z,t)pu(z,t)).

If ¢¥; — 0 in C°(R) then Kv; — 0 in D; ;. The kernel theorem implies that
6(u® —€)G* is well defined as a distribution in D;, ; . and acts on tensor products
via (3.9). Moreover,

(3.10)  (8e8(uf — £)G%, 0o @17 / GE (2, t)p(z, )" (uf (z, t) )dwdt .

Thus (3.7) is written as
(Oex® + a(8) - VX*, 7' (€)p(z, 1))

d
= (Z Oy H6(uf =€), ()p(2, 1)) + (O (6(u — )G°), 7' (§) (=, 1))

Since the subspace generated by the direct sum test functions ¢ ® 1’ is dense
in C(R% x R x R), the bracket (3) is extended to test functions 6(z,t,&) €
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Cx(R% x Rt x R). So, we have

B

¢ +ale) VX = 3 0, (Hi (e, 03 - ) + 0 (G (@,05(u" — )

1

o,
I

(3.11) = Oz, m5 + 0ck®  in Dp ..

xitg

M-

[
L
-

We estimate first the terms n5. Let 0(x,t,§) € C° (R x Rt x R). Using
the estimates in lemma 2.2, we see that

|<H;5(us - 5)7 0(‘7"’ i £)>|
.y / (emlu P10 )6(z, 1, u" (, 1)) dodt]
x,t

< V| e [l 0, w10, )| dds

z,t

m=1
< CeV2 (e 2mfut| "7 04,0l s2 ) Wollnz, o

< Cﬁl/2||9||L§ J(HD) -

Here we used the following:

u® (z,t)
/ 02(x,t, u)dxdt = / / 200 dédxdt
x,t z,t J —00

2 [ ([ oraeh([ (ooydeyiddr < 1013
x,t —o ‘

-0

(3.12)

IA

This shows that 75 — 0 in Li}t(Hgl) as ¢ — 0, or in other words
m =g; +0g; with g;, g5 — Oin Li,t,g
Next, consider the term m® = G*§(u® — ). Observe that
[(m®, 0)] [(6(u® - £)G*, 6)|

< sup|6(z,t,€)[- lem|u[™ (95, u%)? || 12 (Raxre+)
< Clblieo

and m® is positive bounded in measures M*(R% x R* x R). In summary, the
function x® = 1(u, £) satisfies the (approximate) transport equation

d
(3.13) QX" +a(l) VX" =D 0, (55 +0:g5) +0em®  in D,
j=1
where g5, g7 — 0 in L*(R? x R x R) and m*® is positive bounded in measures

M*(R? x R x R) and precompact in W, P(R? x Rt x R), for 1 < p < %.
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By the averaging lemma (Theorem 3.2),

d+2

/ﬂ(ue,§)¢(£)d§ is precompact in L} | 1<p< ——
¢ d+1

for ¥(¢) € C(R).

Let R be a large positive number and consider ¥ € C2°(R) such that ¢y =1
on (—R,R) and 0 < ¢ < 1. Then

w = [ 106w = | [ 106,00 - wieag

IA

o —R
/R 1,9l + [ 007, €)lde

—o0

It

(u® — R)T + (u* + R)".
Moreover,

/(uE — R)T + (uf + R) dxdt < / |u®| dzdt
lu¢|>R

1 /T C
< = 12dzdt < =.
_RO/Iu[dx <z

We conclude that {u} is Cauchy in L}, ,.
Since u® € LZ%, it follows that (along subsequence) u® — u in P ,p < oo,
and almost everywhere and that v € L3%. Next we pass to the limit ¢ — 0 in

(3.13). Along a further subsequence m® — m weak-* in measure; it follows

(3.14) dx+a(€) -Vx=0m in Dy,..

So, the function x = 1(u, £) satisfies the kinetic formulation of Lions-Perthame-

Tadmor and thus w is the unique entropy solution of (1.1) (see [17]). O
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