LOCAL APPROXIMATE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION POPULATION MODELS

Guangchong Yang ${ }^{1}$, Xia Chen ${ }^{2}$ and Lan Xiao ${ }^{3}$
${ }^{1}$ College of Applied Mathematics
Chengdu University of Information Technology
Chengdu, Sichuan 610225, P. R. China
e-mail: gcyang@cuit.edu.cn
${ }^{2}$ College of Applied Mathematics
Chengdu University of Information Technology
Chengdu, Sichuan 610225, P. R. China
e-mail: xiachencyf@163.com
${ }^{3}$ College of Applied Mathematics
Chengdu University of Information Technology
Chengdu, Sichuan 610225, P. R. China
e-mail: 768866465@qq.com

Abstract

This paper studies approximate solutions for a class of nonlinear diffusion population models. Our methods are to use the fundamental solution of heat equations to construct integral forms of the models and the well-known Banach compression map theorem to prove the existence of positive solutions of integral equations. Non-steady-state local approximate solutions for suitable harvest functions are obtained by utilizing the approximation theorem of multivariate continuous functions.

1. Introduction

The following equation governed by reaction-diffusion equations

$$
\begin{equation*}
w_{t}=d \Delta w+r w\left(1-\frac{w}{K}\right)-h(X, w, t), \quad(X, t) \in \Omega \times R_{+} \tag{1.1}
\end{equation*}
$$

[^0]subject to the suitable boundary conditions (such as Dirichlet boundary conditions $w(X, t)=0, X \in \Omega)$ or initial value conditions $w(X, 0)=w_{0}(X)$ has been used to describe the temporal behavior of population of one species which inhabits a suitable set $\Omega \subset R^{n}$, where Δw is the Laplace operator, $w_{t}=\frac{\partial w}{\partial t}$, the parameter $r>0$ is the intrinsic growth rate of the species, $d>0$ is the diffusion coefficient, $K>0$ is the environmental carrying capacity, $w(X, t)$ is the population number of a species at time t and location X in $\Omega, h(X, w, t)$ is a harvest function.

When $h(X, w, t) \equiv 0$ and $K=1,(1.1)$ is often called Fisher's equation, it was introduced by Fisher to model the advance of a mutant gene in an infinite one-dimensional habitat[4]. Since then, such model has been widely studied by many authors. Here, we only mention a few. In 1979, Ludwig, Aronson and Weinberger [6] used (1.1) to investigate the critical size of the spruce budworm survival in a patch of forest and the width of an effective barrier that prevent spruce budworm transmission. In 2003, Neubert [9] studied the the optimal capture of a Marine protected area by using a proportional harvest function and

$$
\left\{\begin{array}{l}
w_{t}=r w\left(1-\frac{w}{K}\right)+D \Delta w-q E(X) w \\
w(T, 0)=w(T, L)=0
\end{array}\right.
$$

where $0<X<L$ is the size of habitat patch.
In 2007, Roques and Chekroun [10] considered the quasi-constant-yield harvest rate $\delta h(X) \rho_{\epsilon}(w)$, that is, they studied the steady-state solutions (w is independent of t, that is, $\frac{\partial w}{\partial t} \equiv 0$) of the following equation

$$
w_{t}=D \Delta w+w(\mu(X)-v(X) w)-\delta h(X) \rho_{\epsilon}(w), \quad(X, t) \in \Omega \times R_{+},
$$

subject to Neumann boundary conditions and a more general setting $\Omega \subset R^{n}$.
In 2017, by studying the existence of positive solutions of semi-positone Hammerstein integral equations, Lan and Lin [7] proved that in one-dimensional habitat

$$
w_{t}=r w\left(1-\frac{w}{K}\right)+d \Delta w-h(X, w, t),
$$

with the Dirichlet boundary conditions

$$
w(T, 0)=w(T, L)=0,
$$

has steady-state positive solutions for a harvest function $h(X, w, t)=\sigma$.
Up to now, to the best of our knowledge, existing study is limited basically to the steady-state solutions, there is very little study on non-steady-state solutions (that is, $\frac{\partial w}{\partial t} \neq 0$).

The work of this paper is to study non-steady-state local approximate solutions of the initial value problem in higher dimensions

$$
\left\{\begin{array}{l}
w_{t}=d \Delta w+r w\left(1-\frac{w}{K}\right)-h(X, w, t), \quad(X, t) \in R^{n} \times(0, \infty), \tag{1.2}\\
w(X, 0)=w_{0}(X) \geq 0, w_{0} \neq 0, \quad X \in R^{n},
\end{array}\right.
$$

where $h(X, w, t)=\sigma w$ is a proportional harvest function, $0<\sigma<r$.

2. Preliminaries

The following result is the approximation theorem for multivariate continuous functions ([2], Proposition 1.2, page 6).

Theorem 2.1. Let $\Omega \subset R^{n}$ be bounded, $f \in C(\bar{\Omega})$. Then, for any $\epsilon>0$, there exists $g \in C^{\infty}\left(R^{n}\right)$ such that $|f(x)-g(x)|<\epsilon$ on $\bar{\Omega}$, where g is defined as

$$
g(x)=f_{\alpha}(x)=\int_{R^{n}} \underline{f}(y) \psi_{\alpha}(y-x) d y, \quad x \in R^{n}, \alpha>0
$$

\underline{f} is the continuous expansion of f from $\bar{\Omega}$ to R^{n},

$$
\psi_{1}(x):= \begin{cases}c \cdot \exp \left(-\frac{1}{1-|x|^{2}}\right), & |x|<1 \\ 0, & |x| \geq 1,\end{cases}
$$

$c>0$ such that $\int_{R^{n}} \psi_{1}(x) d x=1, \psi_{\alpha}(x)=\alpha^{-n} \psi_{1}\left(\frac{x}{\alpha}\right)$.
Remark 2.2. We can choose g in Theorem 2.1 to have a compact support set (that is, there is a compact set N of R^{n} such that f is only non-zero on N). In fact, letting $R>\max \{|x|: x \in \bar{\Omega}\}, B_{R}(0)=\left\{x \in R^{n}:|x| \leq R\right\}$, $\partial B_{R}(0)=\left\{x \in R^{n}:|x|=R\right\}, h$ is the continuous expansion of f from $\bar{\Omega}$ to $B_{R}(0)$,

$$
\underline{f}(x):= \begin{cases}\frac{d\left(x, \partial B_{R}(0)\right)}{d(x, \bar{\Omega})+d\left(x, \partial B_{R}(0)\right)} h(x), & x \in B_{R}(0), \\ 0, & x \in R^{n} \backslash B_{R}(0),\end{cases}
$$

where $d(x, D)$ is the distance from x to the set D. It is easy to verify that f is continuous and when $\|x\|>R+\alpha, g(x)=0$. Hence g has a compact support set.

Remark 2.3. In Theorem 2.1, if $f(x) \geq 0(x \in \bar{\Omega})$, we can take g satisfying $g(x) \geq 0\left(x \in R^{n}\right)$. In fact, according to the expansion theorem of continuous functions, we can take a non-negative continuous expansion h of f in Remark 2.2 from $\bar{\Omega}$ to $B_{R}(0)$ and from this obtain $g(x) \geq 0\left(x \in R^{n}\right)$.

Next, we introduce the fundamental solution of heat equations [3]

$$
\begin{equation*}
u_{t}-\Delta u=0 \tag{2.1}
\end{equation*}
$$

and use it to construct the solutions to the initial value problems (2.1) and the nonhomogeneous

$$
\begin{equation*}
u_{t}-\Delta u=f \tag{2.2}
\end{equation*}
$$

where $t \geq 0, x \in R^{n}, u: R^{n} \times[0, \infty) \rightarrow R, f: R^{n} \times[0, \infty) \rightarrow R$ and Δu is the Laplace operator of u defined by

$$
\Delta u=\frac{{ }^{2} u}{x_{1}^{2}}+\frac{{ }^{2} u}{x_{2}^{2}}+\cdots+\frac{{ }^{2} u}{x_{n}^{2}}=\sum_{i=1}^{n} \frac{{ }^{2} u}{x_{i}^{2}}
$$

The function

$$
\Phi(x, t):= \begin{cases}\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|x|^{2}}{4 t}}, & x \in R^{n}, t>0, \\ 0, & x \in R^{n}, t<0,\end{cases}
$$

satisfies (2.1) for $(x, t) \in R^{n} \times(0, \infty)$ and is called to be the fundamental solution of (2.1).
Lemma 2.4. ([3]) For each time $t>0, \int_{R^{n}} \Phi(x, t) d x=1$.
Assume that $g \in C\left(R^{n}\right) \bigcap L^{\infty}\left(R^{n}\right)$, we define

$$
\begin{align*}
u(x, t) & =\int_{R^{n}} \Phi(x-y, t) g(y) d y \\
& =\frac{1}{(4 \pi t)^{n / 2}} \int_{R^{n}} e^{-\frac{|x-y|^{2}}{4 t}} g(y) d y,\left(x \in R^{n}, t>0\right) \tag{2.3}
\end{align*}
$$

Theorem 2.5. ([3]) Let u be defined in (2.3). Then
(1) $u \in C^{\infty}\left(R^{n} \times(0, \infty)\right)$,
(2) $u_{t}-\Delta u=0\left(x \in R^{n}, t>0\right)$,
(3) $\lim _{(x, t) \rightarrow\left(x^{0}, 0\right)} u(x, t)=g\left(x^{0}\right)\left(x \in R^{n}, t>0\right)$ for each point $x^{0} \in R^{n}$.

Let (see [3])
$C_{1}^{2}\left(R^{n} \times[0, \infty)\right)=\left\{f: R^{n} \times[0, \infty) \rightarrow R \mid f, D_{x} f, D_{x}^{2} f, f_{t} \in C\left(R^{n} \times[0, \infty)\right)\right\}$.
Assume that $f \in C_{1}^{2}\left(R^{n} \times[0, \infty)\right)$ and f has a compact support set (that is, there is a compact set N of $R^{n} \times[0, \infty)$ such that f is only non-zero on
N), we define

$$
\begin{align*}
u(x, t) & =\int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) f(y, s) d y d s \\
& =\int_{0}^{t} \frac{1}{(4 \pi(t-s))^{n / 2}} \int_{R^{n}} e^{-\frac{|x-y|^{2}}{4(t-s)}} f(y, s) d y d s \tag{2.4}
\end{align*}
$$

where $x \in R^{n}, t>0$.
Theorem 2.6. ([3]) Let u be defined in (2.4). Then
(1) $u \in C_{1}^{2}\left(R^{n} \times(0, \infty)\right)$,
(2) $u_{t}-\Delta u=f(x, t)\left(x \in R^{n}, t>0\right)$,
(3) $\lim _{(x, t) \rightarrow\left(x^{0}, 0\right)} u(x, t)=0\left(x \in R^{n}, t>0\right)$ for each point $x^{0} \in R^{n}$.

Combining Theorem 2.5 and Theorem 2.6, we have
Theorem 2.7. Let $f \in C_{1}^{2}\left(R^{n} \times[0, \infty)\right)$ and it has a compact support set, $g \in C\left(R^{n}\right) \bigcap L^{\infty}\left(R^{n}\right)$. If $u \in C_{1}^{2}\left(R^{n} \times[0, \infty)\right)$ satisfies the equation

$$
\begin{equation*}
u(x, t)=\int_{R^{n}} \Phi(x-y, t) g(y) d y+\int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) f(y, s) d y d s \tag{2.5}
\end{equation*}
$$

then u satisfies

$$
\begin{cases}u_{t}-\Delta u=f, & (x, t) \in R^{n} \times(0, \infty), \\ \lim _{(x, t) \rightarrow\left(x^{0}, 0\right)} u(x, t)=g\left(x^{0}\right), & \left(x \in R^{n}, t>0\right) \text { for each point } x^{0} \in R^{n} .\end{cases}
$$

Proof. Let

$$
\nu(x, t)=\int_{R^{n}} \Phi(x-y, t) g(y) d y
$$

and

$$
\omega(x, t)=\int_{0}^{t} \int_{R^{n}} \Phi(x, y, t-s) f(y, s) d y d s
$$

Then

$$
u=\nu+\omega .
$$

By Theorem 2.5, we have

$$
\begin{cases}\nu_{t}-\Delta \nu=0, & (x, t) \in R^{n} \times(0, \infty) \tag{2.6}\\ \lim _{(x, t) \rightarrow\left(x^{0}, 0\right)} \nu(x, t)=0, & \left(x \in R^{n}, t>0\right) \text { for each point } x^{0} \in R^{n}\end{cases}
$$

By Theorem 2.6, we have

$$
\begin{cases}\omega_{t}-\Delta \omega=f, & (x, t) \in R^{n} \times(0, \infty) \\ \lim _{(x, t) \rightarrow\left(x^{0}, 0\right)} \omega(x, t)=g\left(x^{0}\right), & \left(x \in R^{n}, t>0\right) \text { for each point } x^{0} \in R^{n}\end{cases}
$$

Since $u_{t}=\nu_{t}+\omega_{t}, \Delta u=\Delta \nu+\Delta \omega$, we have the desired result.

3. A fixed point of compression map

Let $x=\frac{X}{\sqrt{d}}$ and $u(x, t)=w(X, t)$. Then $d \Delta w_{X}=\Delta u_{x}$. The initial-value problem (1.2) is transformed into the diffusion equation of the form

$$
\left\{\begin{array}{l}
u_{t}=\Delta u+r u\left(1-\frac{u}{K}\right)-h(\sqrt{d} x, u, t), \quad(X, t) \in R^{n} \times(0, \infty) \tag{3.1}\\
u(x, 0)=w_{0}(X, 0)=w_{0}(\sqrt{d} x, 0)=g(x) \geq 0, g \neq 0, \quad X \in R^{n}
\end{array}\right.
$$

where $(x, t) \in R^{n} \times(0, \infty)$, which allows us to study (1.2) by studying (3.1). Based on the relevant properties and conclusions of heat equations, integral forms of non-steady-state solutions of (3.1) is constructed, and the existence of integral equations is proved by applying the well-known Banach compression theorem.

Let $T>0$ be constant, $C_{T}\left(R^{n} \times[0, T]\right)$ be a set of all real-valued bounded continuous functions on $R^{n} \times[0, T]$. For $u \in C_{T}\left(R^{n} \times[0, T]\right)$, we define the norm

$$
\|u\|=\sup \left\{|u(x, t)|:(x, t) \in\left(R^{n} \times[0, T]\right)\right\} .
$$

A standard augment shows that $C_{T}\left(R^{n} \times[0, T]\right)$ is a Banach space and the details are omitted.

To obtain local approximate solutions of (1.2), we define a map A and prove that A has a fixed point.

Let $\tilde{f} \in C\left(R^{n} \times R^{1} \times[0, T]\right)$ and it has a compact support set and $g \in$ $C\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)$. For $u \in C_{T}\left(R^{n} \times[0, T]\right)$, we define a map A by

$$
A u(x, t):= \begin{cases}B(x, t)+C(x, u(x), t) & x \in R^{n}, t \in(0, T], \tag{3.2}\\ g(x) & x \in R^{n}, t=0,\end{cases}
$$

where

$$
\begin{gathered}
B(x, t):= \begin{cases}\int_{R^{n}} \Phi(x-y, t) g(y) d y & x \in R^{n}, t \in(0, T], \\
g(x) & x \in R^{n}, t=0,\end{cases} \\
C(x, u(x), t):= \begin{cases}\int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) \tilde{f}(y, u(y), s) d y d s & x \in R^{n}, t \in(0, T], \\
0 & x \in R^{n}, t=0 .\end{cases}
\end{gathered}
$$

Then by Theorem 2.5 and Theorem 2.6, we have $B(x, t), C(x, u(x), t) \in C_{T}\left(R^{n} \times\right.$ $[0, T])$ and A maps $C_{T}\left(R^{n} \times[0, T]\right)$ into $C_{T}\left(R^{n} \times[0, T]\right)$.

Theorem 3.1. Let A be defined by (3.2). Assume that \tilde{f} with respect to the second variable satisfies the Lipschitz condition

$$
|\tilde{f}(y, u, t)-\tilde{f}(y, v, t)| \leq L|u-v|,
$$

where L is a Lipschitz constant. If $L T<1$, then A has a unique fixed point u in $C_{T}\left(R^{n} \times[0, T]\right)$. Further, if $\tilde{f} \geq 0$ on $R^{n} \times R^{1} \times[0, T]$, then $u(x, t)>0$ for $(x, t) \in R^{n} \times(0, T]$.

Proof. For $u, v \in C_{T}\left(R^{n} \times[0, T]\right)$, we get

$$
\begin{aligned}
|A u-A v| & \leq \int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s)|\tilde{f}(y, u(y, s), s)-\tilde{f}(y, v(y, s), s)| d y d s \\
& \leq \int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) \cdot L|u(y, s)-v(y, s)| d y d s \\
& \leq L\|u-v\| \int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) d y d s
\end{aligned}
$$

According to Lemma 2.4, we have

$$
\int_{R^{n}} \Phi(x-y, t-s) d y=\int_{R^{n}} \Phi(y, t-s) d y=1, \quad t>s
$$

and so

$$
\|A u-A v\| \leq L\|u-v\| \int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) d y d s \leq L T\|u-v\| .
$$

Since $L T<1$, by the well-known Banach compression theorem, there exists a unique $u \in C_{T}\left(R^{n} \times[0, T]\right)$ such that $A u=u$, and for any $u_{0} \in C_{T}\left(R^{n} \times[0, T]\right)$, $A^{n} u_{0} \rightarrow u$, where

$$
u_{n}=A^{n} u_{0},\left\|u_{n}-u\right\| \leq \alpha^{n-1}\left\|u_{1}-u_{0}\right\|, \alpha=L T<1 .
$$

Let $\tilde{f} \geq 0$ on $R^{n} \times R^{1} \times[0, T]$. If there exists $\left(x_{0}, t_{0}\right) \in\left(R^{n} \times(0, T]\right)$ such that $u\left(x_{0}, t_{0}\right)=0$, by (3.2), we have $\int_{R^{n}} \Phi\left(x_{0}-y, t_{0}\right) g(y) d y=0$ and then $g(y) \equiv 0$, which contradicts $g \neq 0$.

4. Local approximate solutions of (1.2)

Local approximate solutions of (1.2) mean that there exist some $T>0$, for any $M>0$ and $\epsilon>0$, there is $w^{(\epsilon)} \in C_{1}^{2}\left(B_{M}(0) \times(0, T]\right)$ with $w^{(\epsilon)}>0$ on $B_{M}(0) \times(0, T]$ satisfying

$$
\left\{\begin{array}{l}
\sup \left\{\left|w_{t}^{(\epsilon)}-d \Delta w^{(\epsilon)}-\tilde{h}\right|:(X, t) \in B_{M}(0) \times(0, T]\right\} \rightarrow 0 \tag{4.1}\\
\lim _{(x, t) \rightarrow\left(x^{0}, 0\right)} w^{(\epsilon)}(X, t)=g\left(x^{0}\right)\left(x \in R^{n}, t>0\right) \text { for each point } x^{0} \in B_{M}(0)
\end{array}\right.
$$

as $\epsilon \rightarrow 0$, where $B_{M}(0)=\left\{X: x \in R^{n},|X| \leq M\right\}$ and $\tilde{h}(w)=r w\left(1-\frac{w}{K}\right)-\sigma w$.
Let $a=r-\sigma, b=\frac{r}{K}$ and

$$
f_{0}(z):= \begin{cases}0, & z<0, \\ \tilde{h}(z), & 0 \leq z \leq \frac{a}{b} \\ 0, & z>\frac{a}{b}\end{cases}
$$

Notice that $f_{0}^{\prime}(z)=0\left(z \in(-\infty, 0) \cup\left(\frac{a}{b}, \infty\right)\right), f_{0}^{\prime}(z)=a-2 b z\left(0 \leq z \leq \frac{a}{b}\right)$. It is easy to know that f_{0} is non-negative on R^{1} and satisfies Lipschitz condition with the constant $L=a$.

Theorem 4.1. Assume $g \in C_{+}\left(R^{n}\right) \bigcap L^{\infty}\left(R^{n}\right) \backslash\{0\}$ and $T>0$ satisfies $\|g\|_{L^{\infty}}+\frac{T a^{2}}{4 b}=\frac{a}{b}$. If $T a<1$, then (1.2) has local approximate solutions.
Proof. Setting $\tilde{f}(y, z, t)=f_{0}(z)$. By $T a<1$ and Theorem 3.1, there is a unique $u \in C_{T}\left(R^{n} \times[0, T]\right), u(x, t)>0, x \in R^{n}, 0<t \leq T$ satisfying

$$
\begin{equation*}
u(x, t)=\int_{R^{n}} \Phi(x-y, t) g(y) d y+\int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) f_{0}(u(y, s)) d y d s \tag{4.2}
\end{equation*}
$$

Notice that $0 \leq f_{0}(z) \leq \frac{a^{2}}{4 b}$, we obtain

$$
\begin{aligned}
|u(x, t)| & \leq\|g\|_{L^{\infty}} \int_{R^{n}} \Phi(x-y, t) d y+\frac{a^{2}}{4 b} \int_{0}^{T} \int_{R^{n}} \Phi(x-y, t-s) d y d s \\
& =\|g\|_{L^{\infty}}+\frac{T a^{2}}{4 b}=\frac{a}{b}
\end{aligned}
$$

and $f_{0}(u(x, t))=\tilde{h}(u(x, t)) \in C\left(R^{n} \times[0, T]\right)$. Hence

$$
u(x, t)=\int_{R^{n}} \Phi(x-y, t) g(y) d y+\int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) \tilde{h}(u(y, s)) d y d s
$$

For any $M>0$ and $\epsilon>0$, by Theorem 2.1 and the Remarks, there is $h^{(\epsilon)}$ with a compact support set satisfying

$$
h^{(\epsilon)} \in C^{(\infty)}\left(R^{n} \times[0, T]\right), \quad h^{(\epsilon)} \geq 0, \quad(x, t) \in R^{n} \times[0, T]
$$

and so $\left|\tilde{h}(u(x, t))-h^{(\epsilon)}(x, t)\right|<\epsilon$ on $B_{\frac{M}{\sqrt{d}}}(0) \times[0, T]$. Let

$$
\begin{equation*}
u^{(\epsilon)}(x, t)=\int_{R^{n}} \Phi(x-y, t) g(y) d y+\int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) h^{(\epsilon)}(y, s) d y d s \tag{4.3}
\end{equation*}
$$

Since $g(x) \geq 0$ and $g(x) \neq 0$, then $u^{(\epsilon)}(x, t)>0$ on $B_{\frac{M}{\sqrt{d}}}(0) \times(0, T]$. By Theorem 2.7, we have
(1) $u^{(\epsilon)} \in C^{(\infty)}\left(B_{\frac{M}{\sqrt{d}}}(0) \times(0, T]\right)$,
(2) $u_{t}^{(\epsilon)}-\Delta u^{(\epsilon)}=h^{(\epsilon)},(x, t) \in B_{\frac{M}{\sqrt{d}}}(0) \times(0, T]$,
(3) $\lim _{(x, t) \rightarrow\left(x^{0}, 0\right)} u^{(\epsilon)}(x, t)=g\left(x^{0}\right)\left(x \in B_{\frac{M}{\sqrt{d}}}(0), 0<t<T\right)$.

By

$$
\left|u(x, t)-u^{(\epsilon)}(x, t)\right| \leq \int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s)\left|\tilde{h}(u(y, s))-h^{(\epsilon)}(y, s)\right| d y d s
$$

for $(x, t) \in B_{\frac{M}{\sqrt{d}}}(0) \times[0, T]$ and Lemma 2.4, we obtain

$$
\left|u(x, t)-u^{(\epsilon)}(x, t)\right| \leq \epsilon \int_{0}^{t} \int_{R^{n}} \Phi(x-y, t-s) d y d s \leq \epsilon T
$$

and

$$
\left|\tilde{h}(u(x, t))-h\left(u^{(\epsilon)}(x, t)\right)\right| \leq a\left|u(x, t)-u^{(\epsilon)}(x, t)\right| \leq a \epsilon T
$$

for $(x, t) \in B_{\frac{M}{\sqrt{d}}}(0) \times(0, T]$. Let

$$
\begin{aligned}
& \Sigma_{1}=u_{t}^{(\epsilon)}(x, t)-\Delta u^{(\epsilon)}(x, t)-h^{(\epsilon)}(x, t), \\
& \Sigma_{2}=h^{(\epsilon)}(x, t)-\tilde{h}(u(x, t)), \\
& \Sigma_{3}=\tilde{h}(u(x, t))-h\left(u^{(\epsilon)}(x, t)\right) .
\end{aligned}
$$

Then for $(x, t) \in B_{\frac{M}{\sqrt{d}}}(0) \times(0, T]$,

$$
\begin{aligned}
\left|u_{t}^{(\epsilon)}(x, t)-\Delta u^{(\epsilon)}(x, t)-\tilde{h}\left(u^{(\epsilon)}(x, t)\right)\right| & =\left|\Sigma_{1}+\Sigma_{2}+\Sigma_{3}\right|=\left|\Sigma_{2}+\Sigma_{3}\right| \\
& \leq\left|\Sigma_{2}\right|+\left|\Sigma_{3}\right| \leq(a T+1) \epsilon \rightarrow 0
\end{aligned}
$$

and $\lim _{(x, t) \rightarrow\left(x^{0}, 0\right)} u^{(\epsilon)}(x, t)=g\left(x^{0}\right)$ as $\epsilon \rightarrow 0$ for each point $x^{0} \in B_{\frac{M}{\sqrt{d}}}(0)$ and $t>0$.

Let $X=\sqrt{d} x$ and $w^{(\epsilon)}(X, t)=u^{(\epsilon)}(\sqrt{d} x, t) \in C_{1}^{2}\left(B_{M}(0) \times[0, T]\right)$. By (4.1), (1.2) has local approximate solutions. This completes the proof.

5. Discussion

In this paper, local approximate solutions of the initial value problem (1.2) are obtained for $h=r w(1-w)-\sigma w$. Since the function $\Phi(x, t)$ appears in the integral equation (3.2), it brings great difficulties to the calculation of approximate solutions. How to calculate approximate solutions is our future work.

Theorem 2.7 plays a key role in the study of approximate solutions of (1.2). If f in Theorem 2.7 does not satisfy Lipschitz condition, then the study will be difficult and we need to use the theory of partial differential equations $[1,5]$ and other methods such as topological or variational methods $[1,2,8]$.

Acknowledgments: The authors thank for the support of Applied Basic Research Project of Sichuan Province (No. 2018JY0169).

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
[2] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, New York, 1985.
[3] L.C. Evans, Partial Differential Equations (2nd ed), Amer. Math. Soc., Providence, 2010.
[4] R.A. Fisher, The advance of advantageous genes, Ann. Eugenics, 7 (1937), 335-369.
[5] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (2nd ed), Springer Verlag, Berlin, 1983.
[6] D. Ludwig, D.C. Aronson and H.F. Weinberger, Spatial Patterning of the Spruce Budworm, Math. Biology, 8 (1979), 217-258.
[7] K.Q. Lan and W. Lin, Population models with quasi-constant-yield harvest rates, Math. Biosci. Eng., 2 (2017), 467-490.
[8] D. Motreanu, V.V. Motreanu and N. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
[9] M.G. Neubert, Marine reserves and optimal harvesting, Ecol. Lett., (6) 2003, 843-849.
[10] L. Roques and M.D. Chekroun, On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.

[^0]: ${ }^{0}$ Received June 2, 2020. Revised July 27, 2020. Accepted July 28, 2020.
 ${ }^{0} 2010$ Mathematics Subject Classification: 35A07, 35G31, 35K05.
 ${ }^{0}$ Keywords: Population model, non-steady-state, initial value problem, fixed points, local approximate solutions.
 ${ }^{0}$ Corresponding authors: G. C. Yang(gcyang@cuit.edu.cn).

