Nonlinear Functional Analysis and Applications Vol. 26, No. 1 (2021), pp. 83-92 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.01.06 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2021 Kyungnam University Press

LOCAL APPROXIMATE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION POPULATION MODELS

Guangchong Yang¹, Xia Chen² and Lan Xiao³

¹College of Applied Mathematics Chengdu University of Information Technology Chengdu, Sichuan 610225, P. R. China e-mail: gcyang@cuit.edu.cn

²College of Applied Mathematics Chengdu University of Information Technology Chengdu, Sichuan 610225, P. R. China e-mail: xiachencyf@163.com

³College of Applied Mathematics Chengdu University of Information Technology Chengdu, Sichuan 610225, P. R. China e-mail: **768866465@qq.com**

Abstract. This paper studies approximate solutions for a class of nonlinear diffusion population models. Our methods are to use the fundamental solution of heat equations to construct integral forms of the models and the well-known Banach compression map theorem to prove the existence of positive solutions of integral equations. Non-steady-state local approximate solutions for suitable harvest functions are obtained by utilizing the approximation theorem of multivariate continuous functions.

1. INTRODUCTION

The following equation governed by reaction-diffusion equations

$$w_t = d\Delta w + rw(1 - \frac{w}{K}) - h(X, w, t), \quad (X, t) \in \Omega \times R_+$$
(1.1)

⁰Received June 2, 2020. Revised July 27, 2020. Accepted July 28, 2020.

⁰2010 Mathematics Subject Classification: 35A07, 35G31, 35K05.

 $^{^0{\}rm Keywords}$: Population model, non-steady-state, initial value problem, fixed points, local approximate solutions.

⁰Corresponding authors: G. C. Yang(gcyang@cuit.edu.cn).

subject to the suitable boundary conditions (such as Dirichlet boundary conditions $w(X,t) = 0, X \in \Omega$) or initial value conditions $w(X,0) = w_0(X)$ has been used to describe the temporal behavior of population of one species which inhabits a suitable set $\Omega \subset \mathbb{R}^n$, where Δw is the Laplace operator, $w_t = \frac{\partial w}{\partial t}$, the parameter r > 0 is the intrinsic growth rate of the species, d > 0 is the diffusion coefficient, K > 0 is the environmental carrying capacity, w(X,t) is the population number of a species at time t and location X in Ω , h(X, w, t)is a harvest function.

When $h(X, w, t) \equiv 0$ and K = 1, (1.1) is often called Fisher's equation, it was introduced by Fisher to model the advance of a mutant gene in an infinite one-dimensional habitat[4]. Since then, such model has been widely studied by many authors. Here, we only mention a few. In 1979, Ludwig, Aronson and Weinberger [6] used (1.1) to investigate the critical size of the spruce budworm survival in a patch of forest and the width of an effective barrier that prevent spruce budworm transmission. In 2003, Neubert [9] studied the the optimal capture of a Marine protected area by using a proportional harvest function and

$$\begin{cases} w_t = rw(1 - \frac{w}{K}) + D\Delta w - qE(X)w, \\ w(T, 0) = w(T, L) = 0, \end{cases}$$

where 0 < X < L is the size of habitat patch.

In 2007, Roques and Chekroun [10] considered the quasi-constant-yield harvest rate $\delta h(X)\rho_{\epsilon}(w)$, that is, they studied the steady-state solutions (*w* is independent of *t*, that is, $\frac{\partial w}{\partial t} \equiv 0$) of the following equation

$$w_t = D\Delta w + w(\mu(X) - \upsilon(X)w) - \delta h(X)\rho_{\epsilon}(w), \quad (X,t) \in \Omega \times R_+,$$

subject to Neumann boundary conditions and a more general setting $\Omega \subset \mathbb{R}^n$.

In 2017, by studying the existence of positive solutions of semi-positone Hammerstein integral equations, Lan and Lin [7] proved that in one-dimensional habitat

$$w_t = rw(1 - \frac{w}{K}) + d\Delta w - h(X, w, t),$$

with the Dirichlet boundary conditions

$$w(T,0) = w(T,L) = 0,$$

has steady-state positive solutions for a harvest function $h(X, w, t) = \sigma$.

Up to now, to the best of our knowledge, existing study is limited basically to the steady-state solutions, there is very little study on non-steady-state solutions (that is, $\frac{\partial w}{\partial t} \neq 0$).

The work of this paper is to study non-steady-state local approximate solutions of the initial value problem in higher dimensions

$$\begin{cases} w_t = d\Delta w + rw(1 - \frac{w}{K}) - h(X, w, t), & (X, t) \in \mathbb{R}^n \times (0, \infty), \\ w(X, 0) = w_0(X) \ge 0, w_0 \ne 0, & X \in \mathbb{R}^n, \end{cases}$$
(1.2)

where $h(X, w, t) = \sigma w$ is a proportional harvest function, $0 < \sigma < r$.

2. Preliminaries

The following result is the approximation theorem for multivariate continuous functions ([2], Proposition 1.2, page 6).

Theorem 2.1. Let $\Omega \subset \mathbb{R}^n$ be bounded, $f \in C(\overline{\Omega})$. Then, for any $\epsilon > 0$, there exists $g \in C^{\infty}(\mathbb{R}^n)$ such that $|f(x) - g(x)| < \epsilon$ on $\overline{\Omega}$, where g is defined as

$$g(x) = f_{\alpha}(x) = \int_{\mathbb{R}^n} \underline{f}(y)\psi_{\alpha}(y-x)dy, \quad x \in \mathbb{R}^n, \alpha > 0,$$

f is the continuous expansion of f from $\overline{\Omega}$ to \mathbb{R}^n ,

$$\psi_1(x) := \begin{cases} c \cdot exp(-\frac{1}{1-|x|^2}), & |x| < 1, \\ 0, & |x| \ge 1, \end{cases}$$

c > 0 such that $\int_{\mathbb{R}^n} \psi_1(x) dx = 1$, $\psi_\alpha(x) = \alpha^{-n} \psi_1(\frac{x}{\alpha})$.

Remark 2.2. We can choose g in Theorem 2.1 to have a compact support set (that is, there is a compact set N of \mathbb{R}^n such that f is only non-zero on N). In fact, letting $R > \max\{|x| : x \in \overline{\Omega}\}, B_R(0) = \{x \in \mathbb{R}^n : |x| \leq R\},$ $\partial B_R(0) = \{x \in \mathbb{R}^n : |x| = R\}, h$ is the continuous expansion of f from $\overline{\Omega}$ to $B_R(0)$,

$$\underline{f}(x) := \begin{cases} \frac{d(x, \partial B_R(0))}{d(x, \overline{\Omega}) + d(x, \partial B_R(0))} h(x), & x \in B_R(0), \\ 0, & x \in R^n \backslash B_R(0), \end{cases}$$

where d(x, D) is the distance from x to the set D. It is easy to verify that <u>f</u> is continuous and when $||x|| > R + \alpha$, g(x) = 0. Hence g has a compact support set.

Remark 2.3. In Theorem 2.1, if $f(x) \ge 0 (x \in \overline{\Omega})$, we can take g satisfying $g(x) \ge 0 (x \in \mathbb{R}^n)$. In fact, according to the expansion theorem of continuous functions, we can take a non-negative continuous expansion h of f in Remark 2.2 from $\overline{\Omega}$ to $B_R(0)$ and from this obtain $g(x) \ge 0 (x \in \mathbb{R}^n)$.

Next, we introduce the fundamental solution of heat equations [3]

$$u_t - \Delta u = 0 \tag{2.1}$$

and use it to construct the solutions to the initial value problems (2.1) and the nonhomogeneous

$$u_t - \Delta u = f, \tag{2.2}$$

where $t \ge 0, x \in \mathbb{R}^n, u : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}, f : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ and Δu is the Laplace operator of u defined by

$$\Delta u = \frac{^2u}{x_1^2} + \frac{^2u}{x_2^2} + \dots + \frac{^2u}{x_n^2} = \sum_{i=1}^n \frac{^2u}{x_i^2}.$$

The function

$$\Phi(x,t) := \begin{cases} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}, & x \in \mathbb{R}^n, \ t > 0, \\ 0, & x \in \mathbb{R}^n, \ t < 0, \end{cases}$$

satisfies (2.1) for $(x,t) \in \mathbb{R}^n \times (0,\infty)$ and is called to be the fundamental solution of (2.1).

Lemma 2.4. ([3]) For each time t > 0, $\int_{\mathbb{R}^n} \Phi(x, t) dx = 1$.

Assume that $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, we define

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t)g(y)dy$$

= $\frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}}g(y)dy, (x \in \mathbb{R}^n, t > 0).$ (2.3)

Theorem 2.5. ([3]) Let u be defined in (2.3). Then

(1) $u \in C^{\infty}(\mathbb{R}^{n} \times (0, \infty)),$ (2) $u_{t} - \Delta u = 0(x \in \mathbb{R}^{n}, t > 0),$ (3) $\lim_{(x,t)\to(x^{0},0)} u(x,t) = g(x^{0})(x \in \mathbb{R}^{n}, t > 0)$ for each point $x^{0} \in \mathbb{R}^{n}.$

Let (see [3])

$$C_1^2(R^n \times [0,\infty)) = \{ f : R^n \times [0,\infty) \to R | f, D_x f, D_x^2 f, f_t \in C(R^n \times [0,\infty)) \}.$$

Assume that $f \in C_1^2(\mathbb{R}^n \times [0, \infty))$ and f has a compact support set (that is, there is a compact set N of $\mathbb{R}^n \times [0, \infty)$ such that f is only non-zero on

86

N), we define

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) dy ds$$

= $\int_0^t \frac{1}{(4\pi(t-s))^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4(t-s)}} f(y,s) dy ds,$ (2.4)

where $x \in \mathbb{R}^n, t > 0$.

Theorem 2.6. ([3]) Let u be defined in (2.4). Then

- (1) $u \in C_1^2(\mathbb{R}^n \times (0, \infty)),$ (2) $u_t \Delta u = f(x, t)(x \in \mathbb{R}^n, t > 0),$ (3) $\lim_{(x,t)\to(x^0,0)} u(x,t) = 0(x \in \mathbb{R}^n, t > 0)$ for each point $x^0 \in \mathbb{R}^n.$

Combining Theorem 2.5 and Theorem 2.6, we have

Theorem 2.7. Let $f \in C_1^2(\mathbb{R}^n \times [0,\infty))$ and it has a compact support set, $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. If $u \in C_1^2(\mathbb{R}^n \times [0,\infty))$ satisfies the equation

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t)g(y)dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)f(y,s)dyds, \quad (2.5)$$

then *u* satisfies

$$\begin{cases} u_t - \Delta u = f, & (x,t) \in \mathbb{R}^n \times (0,\infty), \\ \lim_{(x,t) \to (x^0,0)} u(x,t) = g(x^0), & (x \in \mathbb{R}^n, t > 0) \text{ for each point } x^0 \in \mathbb{R}^n. \end{cases}$$

Proof. Let

$$\nu(x,t) = \int_{R^n} \Phi(x-y,t)g(y)dy$$

and

$$\omega(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x,y,t-s) f(y,s) dy ds.$$

Then

$$u=\nu+\omega.$$

By Theorem 2.5, we have

$$\begin{cases} \nu_t - \Delta \nu = 0, & (x,t) \in R^n \times (0,\infty), \\ \lim_{(x,t) \to (x^0,0)} \nu(x,t) = 0, & (x \in R^n, t > 0) \text{ for each point } x^0 \in R^n. \end{cases}$$
(2.6)

By Theorem 2.6, we have

$$\begin{cases} \omega_t - \Delta \omega = f, & (x,t) \in \mathbb{R}^n \times (0,\infty), \\ \lim_{(x,t) \to (x^0,0)} \omega(x,t) = g(x^0), & (x \in \mathbb{R}^n, t > 0) \text{ for each point } x^0 \in \mathbb{R}^n. \end{cases}$$

Since $u_t = \nu_t + \omega_t$, $\Delta u = \Delta \nu + \Delta \omega$, we have the desired result.

G. Yang, X. Chen and L. Xiao

3. A FIXED POINT OF COMPRESSION MAP

Let $x = \frac{X}{\sqrt{d}}$ and u(x,t) = w(X,t). Then $d\Delta w_X = \Delta u_x$. The initial-value problem (1.2) is transformed into the diffusion equation of the form

$$\begin{cases} u_t = \Delta u + ru(1 - \frac{u}{K}) - h(\sqrt{dx}, u, t), & (X, t) \in \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = w_0(X, 0) = w_0(\sqrt{dx}, 0) = g(x) \ge 0, g \ne 0, \quad X \in \mathbb{R}^n, \end{cases}$$
(3.1)

where $(x,t) \in \mathbb{R}^n \times (0,\infty)$, which allows us to study (1.2) by studying (3.1). Based on the relevant properties and conclusions of heat equations, integral forms of non-steady-state solutions of (3.1) is constructed, and the existence of integral equations is proved by applying the well-known Banach compression theorem.

Let T > 0 be constant, $C_T(\mathbb{R}^n \times [0,T])$ be a set of all real-valued bounded continuous functions on $\mathbb{R}^n \times [0,T]$. For $u \in C_T(\mathbb{R}^n \times [0,T])$, we define the norm

$$||u|| = \sup\{|u(x,t)| : (x,t) \in (R^n \times [0,T])\}.$$

A standard augment shows that $C_T(\mathbb{R}^n \times [0,T])$ is a Banach space and the details are omitted.

To obtain local approximate solutions of (1.2), we define a map A and prove that A has a fixed point.

Let $\tilde{f} \in C(\mathbb{R}^n \times \mathbb{R}^1 \times [0,T])$ and it has a compact support set and $g \in C(\mathbb{R}^n) \bigcap L^{\infty}(\mathbb{R}^n)$. For $u \in C_T(\mathbb{R}^n \times [0,T])$, we define a map A by

$$Au(x,t) := \begin{cases} B(x,t) + C(x,u(x),t) & x \in \mathbb{R}^n, t \in (0,T], \\ g(x) & x \in \mathbb{R}^n, t = 0, \end{cases}$$
(3.2)

where

$$B(x,t) := \begin{cases} \int_{\mathbb{R}^n} \Phi(x-y,t)g(y)dy & x \in \mathbb{R}^n, t \in (0,T], \\ g(x) & x \in \mathbb{R}^n, t = 0, \end{cases}$$
$$C(x,u(x),t) := \begin{cases} \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)\tilde{f}(y,u(y),s)dyds & x \in \mathbb{R}^n, t \in (0,T], \\ 0 & x \in \mathbb{R}^n, t = 0. \end{cases}$$

Then by Theorem 2.5 and Theorem 2.6, we have $B(x,t), C(x,u(x),t) \in C_T(\mathbb{R}^n \times [0,T])$ and A maps $C_T(\mathbb{R}^n \times [0,T])$ into $C_T(\mathbb{R}^n \times [0,T])$.

Theorem 3.1. Let A be defined by (3.2). Assume that \tilde{f} with respect to the second variable satisfies the Lipschitz condition

$$|\hat{f}(y,u,t) - \hat{f}(y,v,t)| \le L|u-v|,$$

where L is a Lipschitz constant. If LT < 1, then A has a unique fixed point u in $C_T(R^n \times [0,T])$. Further, if $\tilde{f} \ge 0$ on $R^n \times R^1 \times [0,T]$, then u(x,t) > 0 for $(x,t) \in R^n \times (0,T]$.

Proof. For $u, v \in C_T(\mathbb{R}^n \times [0, T])$, we get

$$\begin{aligned} |Au - Av| &\leq \int_0^t \int_{\mathbb{R}^n} \Phi(x - y, t - s) |\tilde{f}(y, u(y, s), s) - \tilde{f}(y, v(y, s), s)| dy ds \\ &\leq \int_0^t \int_{\mathbb{R}^n} \Phi(x - y, t - s) \cdot L |u(y, s) - v(y, s)| dy ds \\ &\leq L ||u - v|| \int_0^t \int_{\mathbb{R}^n} \Phi(x - y, t - s) dy ds. \end{aligned}$$

According to Lemma 2.4, we have

$$\int_{\mathbb{R}^n} \Phi(x-y,t-s)dy = \int_{\mathbb{R}^n} \Phi(y,t-s)dy = 1, \quad t > s$$

and so

$$||Au - Av|| \le L||u - v|| \int_0^t \int_{\mathbb{R}^n} \Phi(x - y, t - s) dy ds \le LT ||u - v||.$$

Since LT < 1, by the well-known Banach compression theorem, there exists a unique $u \in C_T(\mathbb{R}^n \times [0, T])$ such that Au = u, and for any $u_0 \in C_T(\mathbb{R}^n \times [0, T])$, $A^n u_0 \to u$, where

$$u_n = A^n u_0, ||u_n - u|| \le \alpha^{n-1} ||u_1 - u_0||, \alpha = LT < 1.$$

Let $\tilde{f} \ge 0$ on $\mathbb{R}^n \times \mathbb{R}^1 \times [0, T]$. If there exists $(x_0, t_0) \in (\mathbb{R}^n \times (0, T])$ such that $u(x_0, t_0) = 0$, by (3.2), we have $\int_{\mathbb{R}^n} \Phi(x_0 - y, t_0)g(y)dy = 0$ and then $g(y) \equiv 0$, which contradicts $g \ne 0$.

4. Local approximate solutions of (1.2)

Local approximate solutions of (1.2) mean that there exist some T > 0, for any M > 0 and $\epsilon > 0$, there is $w^{(\epsilon)} \in C_1^2(B_M(0) \times (0,T])$ with $w^{(\epsilon)} > 0$ on $B_M(0) \times (0,T]$ satisfying

$$\begin{cases} \sup\{|w_t^{(\epsilon)} - d\Delta w^{(\epsilon)} - \tilde{h}| : (X,t) \in B_M(0) \times (0,T]\} \to 0, \\ \lim_{(x,t) \to (x^0,0)} w^{(\epsilon)}(X,t) = g(x^0)(x \in \mathbb{R}^n, t > 0) \text{ for each point } x^0 \in B_M(0) \end{cases}$$
(4.1)

as $\epsilon \to 0$, where $B_M(0) = \{X : x \in \mathbb{R}^n, |X| \le M\}$ and $\tilde{h}(w) = rw(1 - \frac{w}{K}) - \sigma w$. Let $a = r - \sigma, b = \frac{r}{K}$ and

$$f_0(z) := \begin{cases} 0, & z < 0, \\ \tilde{h}(z), & 0 \le z \le \frac{a}{b}, \\ 0, & z > \frac{a}{b}. \end{cases}$$

Notice that $f'_0(z) = 0$ $(z \in (-\infty, 0) \cup (\frac{a}{b}, \infty))$, $f'_0(z) = a - 2bz$ $(0 \le z \le \frac{a}{b})$. It is easy to know that f_0 is non-negative on R^1 and satisfies Lipschitz condition with the constant L = a.

Theorem 4.1. Assume $g \in C_+(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n) \setminus \{0\}$ and T > 0 satisfies $||g||_{L^{\infty}} + \frac{Ta^2}{4b} = \frac{a}{b}$. If Ta < 1, then (1.2) has local approximate solutions.

Proof. Setting $\tilde{f}(y, z, t) = f_0(z)$. By Ta < 1 and Theorem 3.1, there is a unique $u \in C_T(\mathbb{R}^n \times [0, T]), u(x, t) > 0, x \in \mathbb{R}^n, 0 < t \leq T$ satisfying

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t)g(y)dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)f_0(u(y,s))dyds.$$
(4.2)

Notice that $0 \le f_0(z) \le \frac{a^2}{4b}$, we obtain

$$\begin{aligned} |u(x,t)| &\leq \|g\|_{L^{\infty}} \int_{\mathbb{R}^{n}} \Phi(x-y,t) dy + \frac{a^{2}}{4b} \int_{0}^{T} \int_{\mathbb{R}^{n}} \Phi(x-y,t-s) dy ds \\ &= \|g\|_{L^{\infty}} + \frac{Ta^{2}}{4b} = \frac{a}{b} \end{aligned}$$

and $f_0(u(x,t)) = \tilde{h}(u(x,t)) \in C(\mathbb{R}^n \times [0,T])$. Hence

$$u(x,t) = \int_{R^n} \Phi(x-y,t)g(y)dy + \int_0^t \int_{R^n} \Phi(x-y,t-s)\tilde{h}(u(y,s))dyds.$$

For any M > 0 and $\epsilon > 0$, by Theorem 2.1 and the Remarks, there is $h^{(\epsilon)}$ with a compact support set satisfying

$$h^{(\epsilon)} \in C^{(\infty)}(\mathbb{R}^n \times [0,T]), \quad h^{(\epsilon)} \ge 0, \quad (x,t) \in \mathbb{R}^n \times [0,T]$$

and so $|\tilde{h}(u(x,t)) - h^{(\epsilon)}(x,t)| < \epsilon$ on $B_{\frac{M}{\sqrt{d}}}(0) \times [0,T]$. Let

$$u^{(\epsilon)}(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t)g(y)dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)h^{(\epsilon)}(y,s)dyds.$$
(4.3)

Since $g(x) \ge 0$ and $g(x) \ne 0$, then $u^{(\epsilon)}(x,t) > 0$ on $B_{\frac{M}{\sqrt{d}}}(0) \times (0,T]$. By Theorem 2.7, we have

(1)
$$u^{(\epsilon)} \in C^{(\infty)}(B_{\frac{M}{\sqrt{d}}}(0) \times (0,T]),$$

(2) $u_t^{(\epsilon)} - \Delta u^{(\epsilon)} = h^{(\epsilon)}, (x,t) \in B_{\frac{M}{\sqrt{d}}}(0) \times (0,T],$
(3) $\lim_{(x,t)\to(x^0,0)} u^{(\epsilon)}(x,t) = g(x^0)(x \in B_{\frac{M}{\sqrt{d}}}(0), 0 < t < T).$

By

$$|u(x,t) - u^{(\epsilon)}(x,t)| \le \int_0^t \int_{R^n} \Phi(x-y,t-s) |\tilde{h}(u(y,s)) - h^{(\epsilon)}(y,s)| dy ds$$

for $(x,t) \in B_{\frac{M}{\sqrt{d}}}(0) \times [0,T]$ and Lemma 2.4, we obtain

$$|u(x,t) - u^{(\epsilon)}(x,t)| \le \epsilon \int_0^t \int_{R^n} \Phi(x-y,t-s) dy ds \le \epsilon T$$

and

$$|\tilde{h}(u(x,t)) - h(u^{(\epsilon)}(x,t))| \le a|u(x,t) - u^{(\epsilon)}(x,t)| \le a\epsilon T$$

for $(x,t) \in B_{\frac{M}{\sqrt{d}}}(0) \times (0,T]$. Let

$$\begin{split} \Sigma_1 &= u_t^{(\epsilon)}(x,t) - \Delta u^{(\epsilon)}(x,t) - h^{(\epsilon)}(x,t), \\ \Sigma_2 &= h^{(\epsilon)}(x,t) - \tilde{h}(u(x,t)), \\ \Sigma_3 &= \tilde{h}(u(x,t)) - h(u^{(\epsilon)}(x,t)). \end{split}$$

Then for $(x,t) \in B_{\frac{M}{\sqrt{d}}}(0) \times (0,T],$

$$\begin{aligned} |u_t^{(\epsilon)}(x,t) - \Delta u^{(\epsilon)}(x,t) - \tilde{h}(u^{(\epsilon)}(x,t))| &= |\Sigma_1 + \Sigma_2 + \Sigma_3| = |\Sigma_2 + \Sigma_3| \\ &\leq |\Sigma_2| + |\Sigma_3| \le (aT+1)\epsilon \to 0 \end{aligned}$$

and $\lim_{(x,t)\to(x^0,0)} u^{(\epsilon)}(x,t) = g(x^0)$ as $\epsilon \to 0$ for each point $x^0 \in B_{\frac{M}{\sqrt{d}}}(0)$ and t > 0.

Let $X = \sqrt{dx}$ and $w^{(\epsilon)}(X,t) = u^{(\epsilon)}(\sqrt{dx},t) \in C_1^2(B_M(0) \times [0,T])$. By (4.1), (1.2) has local approximate solutions. This completes the proof. \Box

5. DISCUSSION

In this paper, local approximate solutions of the initial value problem (1.2) are obtained for $h = rw(1 - w) - \sigma w$. Since the function $\Phi(x, t)$ appears in the integral equation (3.2), it brings great difficulties to the calculation of approximate solutions. How to calculate approximate solutions is our future work.

Theorem 2.7 plays a key role in the study of approximate solutions of (1.2). If f in Theorem 2.7 does not satisfy Lipschitz condition, then the study will be difficult and we need to use the theory of partial differential equations [1, 5]and other methods such as topological or variational methods [1, 2, 8].

Acknowledgments: The authors thank for the support of Applied Basic Research Project of Sichuan Province (No. 2018JY0169).

G. Yang, X. Chen and L. Xiao

References

- H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
- [2] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, New York, 1985.
- [3] L.C. Evans, Partial Differential Equations (2nd ed), Amer. Math. Soc., Providence, 2010.
- [4] R.A. Fisher, The advance of advantageous genes, Ann. Eugenics, 7 (1937), 335-369.
- [5] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (2nd ed), Springer Verlag, Berlin, 1983.
- [6] D. Ludwig, D.C. Aronson and H.F. Weinberger, Spatial Patterning of the Spruce Budworm, Math. Biology, 8 (1979), 217-258.
- [7] K.Q. Lan and W. Lin, Population models with quasi-constant-yield harvest rates, Math. Biosci. Eng., 2 (2017), 467-490.
- [8] D. Motreanu, V.V. Motreanu and N. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
- [9] M.G. Neubert, Marine reserves and optimal harvesting, Ecol. Lett., (6) 2003, 843-849.
- [10] L. Roques and M.D. Chekroun, On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.