DOI QR코드

DOI QR Code

CONVERGENCE OF APPROXIMATE SOLUTIONS TO SCALAR CONSERVATION LAWS BY DEGENERATE DIFFUSION

  • Hwang, Seok (Department of Mathematics LaGrange College)
  • 발행 : 2007.01.31

초록

In this paper, we show the convergence of approximate solutions to the convective porous media equation using methodology developed in [8]. First, we obtain the approximate transport equation for the given convective porous media equation. Then using the averaging lemma, we obtain the convergence.

키워드

참고문헌

  1. M. C. Bustos, F. Concha, R. Burger, and E. M. Tory, Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic Publishers, Dordrecht, Netherlands, 1999
  2. J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), 269-361 https://doi.org/10.1007/s002050050152
  3. G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986
  4. R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal. 88 (1985), 223-270 https://doi.org/10.1007/BF00752112
  5. L. Hormander, The Analysis of linear Partial Differential Operators, Springer-Verlag, New York, 1990
  6. S. Hwang, Kinetic decomposition for kinetic models of BGK type, J. Differential equations 190 (2003), no. 2, 353-363 https://doi.org/10.1016/S0022-0396(02)00175-4
  7. S. Hwang, Kinetic decomposition for singularly perturbed higher order partial differential equations, J. Differential equations 200 (2004), no. 2, 191-205 https://doi.org/10.1016/j.jde.2003.12.001
  8. S. Hwang and A. E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: applications to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations 27 (2002), 1229-1254 https://doi.org/10.1081/PDE-120004900
  9. S. N. Kruzhkov, First order quasilinear equations with several independent variables, Math. USSR Sbornik 10 (1971), 217-243 https://doi.org/10.1070/SM1970v010n02ABEH002156
  10. P. L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of scalar multidimensional conservation laws, J. Amer. Math. Soc. 7 (1994), 169-191 https://doi.org/10.2307/2152725
  11. P. Marcati, Convergence of approximate solutions to scalar conservation laws by degenerate diffusion, Rend. Sem. Mat. Univ. Padova 81 (1989), 65-78
  12. P. Marcati, Approximate solutions to conservation laws via convective parabolic equations, Comm. Partial Differential Equations 13 (1988), no. 3, 321-344 https://doi.org/10.1080/03605308808820544
  13. P. Marcati and R. Natalini, Convergence of the pseudoviscosity approximation for conservation laws, Nonlinear Anal. 23 (1994), 621-628 https://doi.org/10.1016/0362-546X(94)90241-0
  14. O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Uspekhi Mat. Nauk 14 (1959), 165-170
  15. O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Amer. Math. Soc. Transl. Ser. 2 33 (1963), 285-290
  16. S. Osher and J. Ralston, $L^1$-stability of traveling waves with applications to convective porous media flow, Comm. Pure Appl. Math. 35 (1982), 737-749 https://doi.org/10.1002/cpa.3160350602
  17. B. Perthame, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures Appl. 77 (1998), 1055-1064 https://doi.org/10.1016/S0021-7824(99)80003-8
  18. B. Perthame, Kinetic formulation of Conservation laws, Oxford University Press, 2002
  19. B. Perthame and P. E. Souganidis, A limiting case for velocity averaging, Ann. Sci. Ecole Norm. Sup. 31 (1998), 591-598 https://doi.org/10.1016/S0012-9593(98)80108-0
  20. B. Perthame and A. E. Tzavaras, Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal. 155 (2000), 1-48 https://doi.org/10.1007/s002050000109
  21. M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations 7 (1982), 959-1000 https://doi.org/10.1080/03605308208820242
  22. A. Szepessy, An existence result for scalar conservation laws using measure-valued solutions, Comm. Partial Differential Equations 14 (1989), 1329-1350 https://doi.org/10.1080/03605308908820657
  23. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, Knops, R.J., Eds.; Heriot-Watt Symposium, Pitman Research Notes in Mathematics, Pitman : Boston, 1979; Vol. 4, 136-192
  24. L. Tartar, CBMS Lecture Notes, (in preparation)
  25. A. I. Vol'pert and S. I. Hudjaev, Cauchy problem for degenerate second order quasilinear parabolic equations, Math. USSR Sbornik 7 (1969), 365-387 https://doi.org/10.1070/SM1969v007n03ABEH001095