• Title/Summary/Keyword: antimicrobial substance

Search Result 210, Processing Time 0.023 seconds

Antimicrobial and Cell Viability Measurement of Hypochlorous Acid against Streptococcus. mutans and Aggregatibacter. actinomycetemcomitans (미산성 차아염소산수의 S. mutans와 A. actinomycetemcomitans에 대한 살균 효과)

  • Song, Jiyeon;Kim, Jiyoung;Lee, Kyunghee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • Purpose : Hypochlorous acid (HOCl), a major inorganic bactericidal compound of innate immunity, is effective against a broad range of microorganisms. In particular, HOCl is well-known as a non-antibiotic antimicrobial substance. However, effects of HOCl as an antimicrobial agent are still needed to study these functions against various specific type of microorganisms. In this study, we investigated the antimicrobial effect of hypochlorous acid (HOCl) in S. mutans and A. actinomycetemcomitans to cause dental caries and periodontal disease. Experiments were conducted to observe whether HOCl become effective replacement of disinfectant. Methods : To observe antimicrobial effect of HOCl, stabilized HOCl is prepared in the form of a physiologically balanced solution in pre-conditioned and post-conditioned HOCl solution. As a control, commercially available disinfectant MAXCLEAN was used as positive control. Moreover, S. mutans and A. actinomycetemcomitans distribution in gagrin, filtered tap water, and culture media. Cell viability were measured by viable cell count methods and disk diffusion test. Results : Our results showed that treatment of HOCl have no effect against antimicrobial effect compare to control group especially gagrin in disk diffusion test. HOCl tended to reduced viability against S. mutans in group of post-conditioned than pre-conditioned of HOCl solution however, there was no significant difference as well as no effect in A. actinomycetemcomitans. Conclusion : HOCl showed tendency to reduce viability against S. mutans in group of post-conditioned of HOCl solution and no effect of antimicrobial effect. Although HOCl is well known as effective against a broad range of microorganisms, HOCl seems to have diversity following type of species to be used as antimicrobial drug following our results. Therefore, it is necessary to be rigidly controlled and regulated in using HOCl solution clinically.

Isolation of Antimicrobial Substance by Produced Bacillus sp. SD-10 with Antagonistic Activity Towards Mushroom Pathogens (버섯병원균에 대한 길항세균 Bacillus sp. SD-10이 생산하는 항균물질의 분리)

  • 이상원;류현순;갈상완;박기훈;김철호;최영주
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.467-471
    • /
    • 2004
  • Bacillus sp. SD-10 was investigated to develope biological pesticides for control of mushroom diseases. Bacillus sp. SD-10 showed high antifungal activity when cultured at 35∼4$0^{\circ}C$ for 30∼4$0^{\circ}C$. The culture filtrate of the bacterium inhibited the growth of mycelium of T. virens which is a kind of mushroom pathogene. On the test of inhibition of spore germination of T. virens, more than 5% of the culture filtrate in the media inhibited completely the germination of the spores. An antimicrobial substance, UPX-1 was purified from the culture filtrate of the Bacillus. From the $^1H$-NMR and $^{13}C$-NMR spectrum analysis, the substance was indentifed as disaccharide composed to six carbon sugars. UPX-1 has not only strong antifungal activity against T. virens but also antibacterial activity against Pseudomonas tolaassi.

Anticandidal Activity of the Protein Substance from Coptidis Rhizoma (황련에서 분리된 단백질성분의 항진균효과)

  • Kim Hyunkyung;Lee Jue-Hee;Shim Jin Kie;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.323-329
    • /
    • 2005
  • Antimicrobial peptides are evolutionary ancient weapons for animal and plant species to depend themselves against infectious microbes. In the present study, we investigated if an antimicrobial peptide was produced from Coptidis Rhizoma. For the determination, protein substance from the medicinal plant was isolated by various preparations. Among the preparations, the protein portion dissolved in phosphate-buffered saline solution (CRP-DS) that contained the most amount of protein $(90\%)$ resulted in maximal inhibition of Candida albicans which causes local and systemic infections. Analyses by gel-electrophoresis and gel-permeation chromatography showed the CRP-DS formed a single band of approximately 11.8 KDa as molecular size. Antifungal activity of the CRP-DS was almost equivalent to antifungal activity by fluconazole, resulting in MIC (minimal inhibitory concentration) of approximately $50{\mu}g/ml$. The antifungal activity was a dose-dependent. The antifungal activity appeared to be inactivated by heat-treatment and ionic strength, respectively. In a murine model, the CRP-DS enhanced resistance of mice against disseminated candidiasis. The HPLC analysis demonstrated maximum $4\%$ of berberine as residual content in the CRP-DS preparation resulted in no influence on the antifungal activity. In addition, protein portion isolated from Phellodendri Cortex producing the alkaloid component like Coptidis Rhizoma had no such anticandidal effect. These results indicate that the protein substance from Coptidis Rhizoma was responsible for the antifungal activity.

Isolation of Antimicrobial Active Substance from Usnea longissima against Sclerotial Rot (Sclerotinia sclerotiorum) (송라(Usnea longissima)추출물로부터 균핵병 병원균(Sclerotinia sclerotiorum)에 대한 항균 활성물질 탐색)

  • Kwon, Yubin;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.887-896
    • /
    • 2015
  • To develop environment-friendly agricultural products with anti-microbial activity against Sclerotinia sclerotiorum as a pathogen of sclerotium disease, Usnea longissima was extracted by methanol and its extract was fractionated into several solvent fractions. The chloroform fraction, which showed the highest antimicrobial activity, was separated by silica gel-column chromatography and obtained into nine group subfractions. The nine group fractions were searched the antifungal activities by bioassay. The most active No. 3 subfraction was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to database of Wiley library. As a result, Usnic acid was identified as main compounds. In conclusion, Usnic acid isolated from Usnea longissima was antimicrobial chemical against Sclerotinia sclerotiorum as a pathogen of sclerotium disease.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Isolation and Identification of Antimicrobial Active Substance from Mallotus japonicus Muell on Listeria monocytogenes (예덕나무로부터 Listeria monocytogenes 에 대한 항균 활성 물질의 분리 및 구조동정)

  • Ahn, Yong-Seon;Shin, Dong-Hwa;Baek, Nam-In;Seong, Rack-Seon;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.271-277
    • /
    • 2001
  • Ethanol extracts from Mallotus japonicus Muell exhibited strong antimicrobial activities by paper disc diffusion method on the five strains of Listeria monocytogenes(ATCC 19111, ATCC 19112, ATCC 19113, ATCC 19114 and ATCC 15313). Ethanol extract from Mallotus japonicus Muell was subsequently fractionated by n-hexane, chloroform, ethyl acetate and water. n-Hexane fraction of Mallotus japonicus Muell showed strong growth inhibition at concentrations as low as 20 ppm level in broth culture medium on the five strains of L. monocytogenes for 72 hr at $30^{\circ}C$. Single substance(M34-4-4) was isolated from n-hexane fraction of Mallotus japonicus Muell. M34-4-4 showed a bactericidal activity against L. monocytogenes at a concentration of 50 ppm level. The purified M34-4-4 was identified as linolenic acid by $^1H-NMR,\;DEPT-135\;and\;^{13}C-NMR$.

  • PDF

Isolation and Identification of Active Antimicrobial Substance against Listeria monocytogenes from Ruta graveolens Linne (운향으로부터 Listeria monocytogenes에 대한 항균 활성 물질의 분리 및 구조동정)

  • Ahn, Yong-Seon;Shin, Dong-Hwa;Baek, Nam-In
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1379-1388
    • /
    • 2000
  • Ethanol extracts from Ruta graveolens Linne exhibited strong antimicrobial activities by disc diffusion method against 5 strains of Listeria monocytogenes (ATCC 19111, ATCC 19112, ATCC 19113, ATCC 19114 and ATCC 15313). Ethanol extract from Ruta graveolens Linne was subsequently fractionated by n-hexane, chloroform, ethyl acetate and water. Chloroform fraction of Ruta graveolens Linne showed strong growth inhibition at concentrations as low as 40 ppm level in broth culture medium against 5 strains of L. monocytogenes for 72 hr at $30^{\circ}C$. Single substance(RTG1-1) was isolated by silica gel column chromatography from chloroform fraction of Ruta graveolens Linne. RTG1-1 showed a strong bactericidal activity against L. monocytogenes at a concentration of 20 ppm level. Purified RTG1-1 was identified as gravacridonechlorine by analyses of EI-Mass, $^1H-NMR$ and $^{13}C-NMR$.

  • PDF

Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens

  • Paguirigan, Jaycee A.;Liu, Rundong;Im, Seong Mi;Hur, Jae-Seoun;Kim, Wonyong
    • The Plant Pathology Journal
    • /
    • v.38 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Plant pathogens pose major threats on agriculture and horticulture, causing significant economic loss worldwide. Due to the continuous and excessive use of synthetic pesticides, emergence of pesticide resistant pathogens has become more frequent. Thus, there is a growing needs for environmentally-friendly and selective antimicrobial agents with a novel mode of action, which may be used in combination with conventional pesticides to delay development of pesticide resistance. In this study, we evaluated the potentials of lichen substances as novel biopesticides against eight bacterial and twelve fungal plant pathogens that have historically caused significant phytopathological problems in South Korea. Eight lichen substances of diverse chemical origins were extracted from axenic culture or dried specimen, and further purified for comparative analysis of their antimicrobial properties. Usnic acid and vulpinic acid exhibited strong antibacterial activities against Clavibacter michiganensis subsp. michiganensis. In addition, usnic acid and vulpinic acid were highly effective in the growth inhibition of fungal pathogens, such as Diaporthe eres, D. actinidiae, and Sclerotinia sclerotiorum. Intriguingly, the growth of Rhizoctonia solani was specifically inhibited by lecanoric acid, indicating that lichen substances exhibit some degrees of selectivity to plant pathogens. These results suggested that lichen substance can be used as a selective biopesticide for controlling plant disease of agricultural and horticultural significance, minimizing possible emergence of pesticide resistant pathogens in fields.

Studies on the cytotoxicity and Antimicrobial Effects of the Extract of Houttuynia cordata (IV) (어성초 추출물의 세포독성과 향균효과 (IV))

  • Lee Jeong-Ho;Park Nang-Kyu;Yang Eun-Yeong;Lee Hyun-Ok;Han Dong-Min;Baek Seung-Hwa
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.144-151
    • /
    • 2000
  • This study was carried out to evaluate cytotoxic effects of Houttuynia cordata Thunberg extracts on murine leukemia tumor cell lines. Disruptions in cell organelles were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol iumbromide (MMT) assay. The comparison of $IC_{50}$ values of Houttuynia cordata Thunberg extracts on $L1210,\;P388D_1$ and Vero cell lines showed that the methanol extract of Houttuynia cordata Thunberg indicated the most antitumor activity in the MTT assay. In order to develop a antimicrobial agent, dried Houttuynia cordata Thunberg was extracted with several solvents, and then antimicrobial activity was investigated. The minimal inhibitory concentration (MIC) of the extracted substance against microorganisms were also examined. Antimicrobial activity of amocla and ketoconazole as references was compared to those of other solvent extracts such as $H_2O$, n-hexane, chloroform, ethyl acetate ethanol and methanol. The antimicrobial activity of all extracts from the sample had growth inhibition activity against gram-negative bacteria, yam-positive bacteria and fungi $(MIC,\;>\;200\;{\mu} g/ml)$. These results suggest that the methanol soluble extract of Houttuynia cordata Thunberg may be a valuable choice for the studies on the treaeent of murine leukemia tumor cell lines and antimicrobial agents.

  • PDF

Isolation of Antimicrobial Substance from Schizandra chinensis Baillon and Antimicrobial Effect (오미자로부터 항균활성 물질의 분리 및 항균효과)

  • Lee, Ju-Yeun;Min, Young-Kyoo;Kim, Hee-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.389-394
    • /
    • 2001
  • In order to isolate antimicrobial substances from Schizandra chinensis, the dried fruits were extracted with the methanol and the extract showed a strong antimicrobial activity. Also, the methanol exract was further fractionated with hexane, dichloromethane, ethylacetate and buthanol. The ethyl acetate-soluble fraction showed the strongest antimicrobial activity. These fraction were further separated by using various chromatographic methods including thin layer chromatography, silicagel open column chromatography and prep. HPLC. A major component S-EA-5-T1 and S-EA-5-T3 from the ethyl acetate fraction, which showed a strong antimicrobial activity was identified by Mass and NMR spectrometry. Two compounds were isolated and identified as trimethylcitrate and the essential oil of Schizandra chinensis and was estimated as gomisin C, respectively. The growth of S. typhimurium was also inhibited about 1.65 to 2.86 log cycle in minced pork by the addition 1% of Schizandra chinensis extract for 12 days at $4^{\circ}C$. These results suggested that these compounds have a strong potential as a natual food preservatives.

  • PDF