Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.12.2021.0176

Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens  

Paguirigan, Jaycee A. (Korean Lichen Research Institute, Sunchon National University)
Liu, Rundong (Korean Lichen Research Institute, Sunchon National University)
Im, Seong Mi (Korean Lichen Research Institute, Sunchon National University)
Hur, Jae-Seoun (Korean Lichen Research Institute, Sunchon National University)
Kim, Wonyong (Korean Lichen Research Institute, Sunchon National University)
Publication Information
The Plant Pathology Journal / v.38, no.1, 2022 , pp. 25-32 More about this Journal
Abstract
Plant pathogens pose major threats on agriculture and horticulture, causing significant economic loss worldwide. Due to the continuous and excessive use of synthetic pesticides, emergence of pesticide resistant pathogens has become more frequent. Thus, there is a growing needs for environmentally-friendly and selective antimicrobial agents with a novel mode of action, which may be used in combination with conventional pesticides to delay development of pesticide resistance. In this study, we evaluated the potentials of lichen substances as novel biopesticides against eight bacterial and twelve fungal plant pathogens that have historically caused significant phytopathological problems in South Korea. Eight lichen substances of diverse chemical origins were extracted from axenic culture or dried specimen, and further purified for comparative analysis of their antimicrobial properties. Usnic acid and vulpinic acid exhibited strong antibacterial activities against Clavibacter michiganensis subsp. michiganensis. In addition, usnic acid and vulpinic acid were highly effective in the growth inhibition of fungal pathogens, such as Diaporthe eres, D. actinidiae, and Sclerotinia sclerotiorum. Intriguingly, the growth of Rhizoctonia solani was specifically inhibited by lecanoric acid, indicating that lichen substances exhibit some degrees of selectivity to plant pathogens. These results suggested that lichen substance can be used as a selective biopesticide for controlling plant disease of agricultural and horticultural significance, minimizing possible emergence of pesticide resistant pathogens in fields.
Keywords
antimicrobial; biopesticide; lecanoric acid; usnic acid; vulpinic acid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Rankovic, B. and Misic, M. 2008. The antimicrobial activity of the lichen substances of the lichens Cladonia furcata, Ochrolechia androgyna, Parmelia caperata and Parmelia conspresa. Biotechnol. Biotechnol. Equip. 22:1013-1016.   DOI
2 Stocker-Worgotter, E. 2008. Metabolic diversity of lichenforming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25:188-200.   DOI
3 Yoshimura, I., Kinoshita, Y., Yamamoto, Y., Huneck, S. and Yamada, Y. 1994. Analysis of secondary metabolites from Lichen by high performance liquid chromatography with a photodiode array detector. Phytochem. Anal. 5:197-205.   DOI
4 Peng, Y., Li, S. J., Yan, J., Tang, Y., Cheng, J. P., Gao, A. J., Yao, X., Ruan, J. J. and Xu, B. L. 2021. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 12:670135.   DOI
5 Raaijmakers, J. M. and Mazzola, M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50:403-424.   DOI
6 Rizzo, D. M., Lichtveld, M., Mazet, J., Togami, E. and Miller, S. A. 2021. Plant health and its effects on food safety and security in a One Health framework: four case studies. One Health Outlook 3:6.   DOI
7 Schmeda-Hirschmann, G., Tapia, A., Lima, B., Pertino, M., Sortino, M., Zacchino, S., Arias, A. R. and Feresin, G. E. 2008. A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother. Res. 22:349-355.   DOI
8 Shrestha, G., Thompson, A., Robison, R. and St Clair, L. L. 2016. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillinresistant Staphylococcus aureus. Pharm. Biol. 54:413-418.   DOI
9 Atanasov, A. G., Zotchev, S. B. and Dirsch, V. M., International Natural Product Sciences Taskforce and Supuran, C. T. 2021. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20:200-216.   DOI
10 Thomashow, L. S., Bonsall, R. F. and Weller, D. M. 1997. Antibiotic production by soil and rhizosphere microbes in situ. In: Manual of environmental microbiology, eds. by C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach and M. V. Walter, pp. 493-499. ASM Press, Washington, DC, USA.
11 Boustie, J. and Grube, M. 2005. Lichens-a promising source of bioactive secondary metabolites. Plant Genet. Resour. 3:273-287.   DOI
12 Francolini, I., Norris, P., Piozzi, A., Donelli, G. and Stoodley, P. 2004. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob. Agents Chemother. 48:4360-4365.   DOI
13 Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A. and Owen, J. G. 2018. Secondary metabolism in the lichen symbiosis. Chem. Soc. Rev. 47:1730-1760.   DOI
14 Cankilic, M. Y., Sariozlu, N. Y., Candan, M. and Tay, F. 2017. Screening of antibacterial, antituberculosis and antifungal effects of lichen Usnea florida and its thamnolic acid constituent. Biomed. Res. 28:3108-3113.
15 Dayan, F. E. and Romagni, J. G. 2001. Lichens as a potential source of pesticides. Pestic. Outlook 12:229-232.   DOI
16 Wiegand, I., Hilpert, K. and Hancock, R. E. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3:163-175.   DOI
17 Yi, S. A., Nam, K. H., Kim, S., So, H. M., Ryoo, R., Han, J.-W., Kim, K. H. and Lee, J. 2019. Vulpinic acid controls stem cell fate toward osteogenesis and adipogenesis. Genes 11:18.   DOI
18 Hong, J.-M., Suh, S.-S., Kim, T. K., Kim, J. E., Han, S. J., Youn, U. J., Yim, J. H. and Kim, I.-C. 2018. Anti-cancer activity of lobaric acid and lobarstin extracted from the antarctic lichen Stereocaulon alpnum. Molecules 23:658.   DOI
19 Ingolfsdottir, K. 2002. Usnic acid. Phytochemistry 61:729-736.   DOI
20 Burkholder, P. R., Evans, A. W., McVeigh, I. and Thornton, H. K. 1944. Antibiotic activity of lichens. Proc. Natl. Acad. Sci. U. S. A. 30:250-255.   DOI
21 Candan, M., Yilmaz, M., Tay, T., Erdem, M. and Turk, A. O. 2007. Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Z. Naturforsch. C J. Biosci. 62:619-621.   DOI
22 Paudel, B., Bhattarai, H. D., Pandey, D. P., Hur, J. S., Hong, S. G., Kim, I.-C. and Yim, J. H. 2012. Antioxidant, antibacterial activity and brine shrimp toxicity test of some mountainous lichens from Nepal. Biol. Res. 45:387-391.   DOI
23 Kowalski, M., Hausner, G. and Piercey-Normore, M. D. 2011. Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience 52:413-418.   DOI
24 Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R. and Kariman, K. 2018. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control 117:147-157.   DOI
25 Yilmaz, M., Tay, T., Kivanc, M., Turk, H. and Turk, A. O. 2005. The antimicrobial activity of extracts of the lichen Hypogymnia tubulosa and its 3-hydroxyphysodic acid constituent. Z. Naturforsch. C J. Biosci. 60:35-38.   DOI
26 Konig, G. M. and Wright, A. D. 1999. 1H and 13C-NMR and biological activity investigations of four lichen-derived compounds. Phytochem. Anal. 10:279-284.   DOI
27 Kokubun, T., Shiu, W. K. and Gibbons, S. 2007. Inhibitory activities of lichen-derived compounds against methicillinand multidrug-resistant Staphylococcus aureus. Planta Med. 73:176-179.   DOI
28 Goga, M., Elecko, J., Marcincinova, M., Rucova, D., Backorova, M. and Backor, M. 2018. Lichen metabolites: an overview of some secondary metabolites and their biological potential. In: Co-evolution of secondary metabolites, eds. by J. M. Merillon and K. Ramawat, pp. 175-209. Springer, Cham, Switzerland.
29 Honegger, R. 1991. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:533-578.   DOI
30 Huneck, S. 1999. The significance of lichens and their metabolites. Naturwissenschaften 86:559-570.   DOI
31 Kwon, Y., Cha, J., Chiang, J., Tran, G., Giaever, G., Nislow, C., Hur, J.-S. and Kwak, Y.-S. 2016. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J. Appl. Microbiol. 121:1580-1591.   DOI
32 Yang, Y., Nguyen, T. T., Jeong, M.-H., Crisan, F., Yu, Y. H., Ha, H.-H., Choi, K. H., Jeong, H. G., Jeong, T. C., Lee, K. Y., Kim, K. K., Hur, J.-S. and Kim, H. 2016. Inhibitory activity of (+)-usnic acid against non-small cell lung cancer cell motility. PLoS One 11:e0146575.   DOI
33 Ingolfsdottir, K., Wiedemann, B., Birgisdottir, M., Nenninger, A., Jonsdottir, S. and Wagner, H. 1997. Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in vitro. Phytomedicine 4:125-128.   DOI
34 Kim, W., Liu, R., Woo, S., Kang, K. B., Park, H., Yu, Y. H., Ha, H.-H., Oh, S.-Y., Yang, J. H., Kim, H., Yun, S.-H. and Hur, J.- S. 2021. Linking a gene cluster to atranorin, a major cortical substance of lichens, through genetic dereplication and heterologous expression. mBio 12:e0111121.   DOI
35 Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. and Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430-439.   DOI
36 Maciag-Dorszynska, M., Wegrzyn, G. and Guzow-Krzeminska, B. 2014. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett. 353:57-62.   DOI
37 Lawrey, J. D. 1986. Biological role of lichen substances. Bryologist 89:111-122.   DOI
38 Lauterwein, M., Oethinger, M., Belsner, K., Peters, T. and Marre, R. 1995. In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 39:2541-2543.   DOI
39 Lee, J. G., Lee, D. H., Park, S. Y., Hur, J.-S. and Koh, Y. J. 2001. First report of Diaporthe actinidiae, the causal organism of stem-end rot of kiwifruit in Korea. Plant Pathol. J. 17:110-113.
40 Manojlovic, N. T., Vasiljevic, P. J., Maskovic, P. Z., Juskovic, M. and Bogdanovic-Dusanovic, G. 2012. Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) delise (Umbilicariaceae). Evid. Based Complement. Alternat. Med. 2012:452431.
41 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125.   DOI
42 Luo, H., Yamamoto, Y., Kim, J. A., Jung, J. S., Koh, Y. J. and Hur, J.-S. 2009. Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biol. 32:1033-1040.   DOI
43 Halama, P. and Van Haluwin, C. 2004. Antifungal activity of lichen extracts and lichenic acids. BioControl 49:95-107.   DOI
44 Lee, S., Lee, Y., Ha, S., Chung, H. Y., Kim, H., Hur, J.-S. and Lee, J. 2020. Anti-inflammatory effects of usnic acid in an MPTP-induced mouse model of Parkinson's disease. Brain Res. 1730:146642.   DOI
45 Melgarejo, M., Sterner, O., Castro, J. V. and Mollinedo, P. 2008. More investigations in potent activity and relationship structure of the lichen antibiotic (+)-usnic acid and its derivate dibenzoylusnic acid. Rev. Bol. Quim. 25:24-29.
46 Molnar, K. and Farkas, E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z. Naturforsch. C J. Biosci. 65:157-173.   DOI
47 Oh, S.-O., Jeon, H.-S., Lim, K.-M., Koh, Y.-J. and Hur, J.-S. 2006. Antifungal activity of lichen-forming fungi isolated from Korean and Chinese lichen species against plant pathogenic fungi. Plant Pathol. J. 22:381-385.   DOI