DOI QR코드

DOI QR Code

Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens

  • Paguirigan, Jaycee A. (Korean Lichen Research Institute, Sunchon National University) ;
  • Liu, Rundong (Korean Lichen Research Institute, Sunchon National University) ;
  • Im, Seong Mi (Korean Lichen Research Institute, Sunchon National University) ;
  • Hur, Jae-Seoun (Korean Lichen Research Institute, Sunchon National University) ;
  • Kim, Wonyong (Korean Lichen Research Institute, Sunchon National University)
  • Received : 2021.12.08
  • Accepted : 2022.01.04
  • Published : 2022.02.01

Abstract

Plant pathogens pose major threats on agriculture and horticulture, causing significant economic loss worldwide. Due to the continuous and excessive use of synthetic pesticides, emergence of pesticide resistant pathogens has become more frequent. Thus, there is a growing needs for environmentally-friendly and selective antimicrobial agents with a novel mode of action, which may be used in combination with conventional pesticides to delay development of pesticide resistance. In this study, we evaluated the potentials of lichen substances as novel biopesticides against eight bacterial and twelve fungal plant pathogens that have historically caused significant phytopathological problems in South Korea. Eight lichen substances of diverse chemical origins were extracted from axenic culture or dried specimen, and further purified for comparative analysis of their antimicrobial properties. Usnic acid and vulpinic acid exhibited strong antibacterial activities against Clavibacter michiganensis subsp. michiganensis. In addition, usnic acid and vulpinic acid were highly effective in the growth inhibition of fungal pathogens, such as Diaporthe eres, D. actinidiae, and Sclerotinia sclerotiorum. Intriguingly, the growth of Rhizoctonia solani was specifically inhibited by lecanoric acid, indicating that lichen substances exhibit some degrees of selectivity to plant pathogens. These results suggested that lichen substance can be used as a selective biopesticide for controlling plant disease of agricultural and horticultural significance, minimizing possible emergence of pesticide resistant pathogens in fields.

Keywords

Acknowledgement

This work was supported by the Korea Research Fellowship Program funded by the Ministry of Science, ICT, and Future Planning (2018H1D3A1A01074888) and by The Korean National Research Resource Center Program (2017M3A9B8069471), through the National Research Foundation of Korea (NRF).

References

  1. Atanasov, A. G., Zotchev, S. B. and Dirsch, V. M., International Natural Product Sciences Taskforce and Supuran, C. T. 2021. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20:200-216. https://doi.org/10.1038/s41573-020-00114-z
  2. Boustie, J. and Grube, M. 2005. Lichens-a promising source of bioactive secondary metabolites. Plant Genet. Resour. 3:273-287. https://doi.org/10.1079/PGR200572
  3. Burkholder, P. R., Evans, A. W., McVeigh, I. and Thornton, H. K. 1944. Antibiotic activity of lichens. Proc. Natl. Acad. Sci. U. S. A. 30:250-255. https://doi.org/10.1073/pnas.30.9.250
  4. Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A. and Owen, J. G. 2018. Secondary metabolism in the lichen symbiosis. Chem. Soc. Rev. 47:1730-1760. https://doi.org/10.1039/c7cs00431a
  5. Candan, M., Yilmaz, M., Tay, T., Erdem, M. and Turk, A. O. 2007. Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Z. Naturforsch. C J. Biosci. 62:619-621. https://doi.org/10.1515/znc-2007-7-827
  6. Cankilic, M. Y., Sariozlu, N. Y., Candan, M. and Tay, F. 2017. Screening of antibacterial, antituberculosis and antifungal effects of lichen Usnea florida and its thamnolic acid constituent. Biomed. Res. 28:3108-3113.
  7. Dayan, F. E. and Romagni, J. G. 2001. Lichens as a potential source of pesticides. Pestic. Outlook 12:229-232. https://doi.org/10.1039/b110543b
  8. Francolini, I., Norris, P., Piozzi, A., Donelli, G. and Stoodley, P. 2004. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob. Agents Chemother. 48:4360-4365. https://doi.org/10.1128/AAC.48.11.4360-4365.2004
  9. Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R. and Kariman, K. 2018. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control 117:147-157. https://doi.org/10.1016/j.biocontrol.2017.11.006
  10. Goga, M., Elecko, J., Marcincinova, M., Rucova, D., Backorova, M. and Backor, M. 2018. Lichen metabolites: an overview of some secondary metabolites and their biological potential. In: Co-evolution of secondary metabolites, eds. by J. M. Merillon and K. Ramawat, pp. 175-209. Springer, Cham, Switzerland.
  11. Halama, P. and Van Haluwin, C. 2004. Antifungal activity of lichen extracts and lichenic acids. BioControl 49:95-107. https://doi.org/10.1023/b:bico.0000009378.31023.ba
  12. Hong, J.-M., Suh, S.-S., Kim, T. K., Kim, J. E., Han, S. J., Youn, U. J., Yim, J. H. and Kim, I.-C. 2018. Anti-cancer activity of lobaric acid and lobarstin extracted from the antarctic lichen Stereocaulon alpnum. Molecules 23:658. https://doi.org/10.3390/molecules23030658
  13. Honegger, R. 1991. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:533-578. https://doi.org/10.1146/annurev.pp.42.060191.003005
  14. Huneck, S. 1999. The significance of lichens and their metabolites. Naturwissenschaften 86:559-570. https://doi.org/10.1007/s001140050676
  15. Ingolfsdottir, K. 2002. Usnic acid. Phytochemistry 61:729-736. https://doi.org/10.1016/S0031-9422(02)00383-7
  16. Ingolfsdottir, K., Wiedemann, B., Birgisdottir, M., Nenninger, A., Jonsdottir, S. and Wagner, H. 1997. Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in vitro. Phytomedicine 4:125-128. https://doi.org/10.1016/S0944-7113(97)80056-6
  17. Kim, W., Liu, R., Woo, S., Kang, K. B., Park, H., Yu, Y. H., Ha, H.-H., Oh, S.-Y., Yang, J. H., Kim, H., Yun, S.-H. and Hur, J.- S. 2021. Linking a gene cluster to atranorin, a major cortical substance of lichens, through genetic dereplication and heterologous expression. mBio 12:e0111121. https://doi.org/10.1128/mBio.01111-21
  18. Kokubun, T., Shiu, W. K. and Gibbons, S. 2007. Inhibitory activities of lichen-derived compounds against methicillinand multidrug-resistant Staphylococcus aureus. Planta Med. 73:176-179. https://doi.org/10.1055/s-2006-957070
  19. Konig, G. M. and Wright, A. D. 1999. 1H and 13C-NMR and biological activity investigations of four lichen-derived compounds. Phytochem. Anal. 10:279-284. https://doi.org/10.1002/(SICI)1099-1565(199909/10)10:5<279::AID-PCA464>3.0.CO;2-3
  20. Kowalski, M., Hausner, G. and Piercey-Normore, M. D. 2011. Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience 52:413-418. https://doi.org/10.1007/s10267-011-0118-3
  21. Kwon, Y., Cha, J., Chiang, J., Tran, G., Giaever, G., Nislow, C., Hur, J.-S. and Kwak, Y.-S. 2016. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J. Appl. Microbiol. 121:1580-1591. https://doi.org/10.1111/jam.13300
  22. Lawrey, J. D. 1986. Biological role of lichen substances. Bryologist 89:111-122. https://doi.org/10.2307/3242751
  23. Lauterwein, M., Oethinger, M., Belsner, K., Peters, T. and Marre, R. 1995. In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 39:2541-2543. https://doi.org/10.1128/AAC.39.11.2541
  24. Lee, J. G., Lee, D. H., Park, S. Y., Hur, J.-S. and Koh, Y. J. 2001. First report of Diaporthe actinidiae, the causal organism of stem-end rot of kiwifruit in Korea. Plant Pathol. J. 17:110-113.
  25. Lee, S., Lee, Y., Ha, S., Chung, H. Y., Kim, H., Hur, J.-S. and Lee, J. 2020. Anti-inflammatory effects of usnic acid in an MPTP-induced mouse model of Parkinson's disease. Brain Res. 1730:146642. https://doi.org/10.1016/j.brainres.2019.146642
  26. Luo, H., Yamamoto, Y., Kim, J. A., Jung, J. S., Koh, Y. J. and Hur, J.-S. 2009. Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biol. 32:1033-1040. https://doi.org/10.1007/s00300-009-0602-9
  27. Maciag-Dorszynska, M., Wegrzyn, G. and Guzow-Krzeminska, B. 2014. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett. 353:57-62. https://doi.org/10.1111/1574-6968.12409
  28. Manojlovic, N. T., Vasiljevic, P. J., Maskovic, P. Z., Juskovic, M. and Bogdanovic-Dusanovic, G. 2012. Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) delise (Umbilicariaceae). Evid. Based Complement. Alternat. Med. 2012:452431.
  29. Melgarejo, M., Sterner, O., Castro, J. V. and Mollinedo, P. 2008. More investigations in potent activity and relationship structure of the lichen antibiotic (+)-usnic acid and its derivate dibenzoylusnic acid. Rev. Bol. Quim. 25:24-29.
  30. Molnar, K. and Farkas, E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z. Naturforsch. C J. Biosci. 65:157-173. https://doi.org/10.1515/znc-2010-3-401
  31. Oh, S.-O., Jeon, H.-S., Lim, K.-M., Koh, Y.-J. and Hur, J.-S. 2006. Antifungal activity of lichen-forming fungi isolated from Korean and Chinese lichen species against plant pathogenic fungi. Plant Pathol. J. 22:381-385. https://doi.org/10.5423/PPJ.2006.22.4.381
  32. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
  33. Paudel, B., Bhattarai, H. D., Pandey, D. P., Hur, J. S., Hong, S. G., Kim, I.-C. and Yim, J. H. 2012. Antioxidant, antibacterial activity and brine shrimp toxicity test of some mountainous lichens from Nepal. Biol. Res. 45:387-391. https://doi.org/10.4067/S0716-97602012000400010
  34. Peng, Y., Li, S. J., Yan, J., Tang, Y., Cheng, J. P., Gao, A. J., Yao, X., Ruan, J. J. and Xu, B. L. 2021. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 12:670135. https://doi.org/10.3389/fmicb.2021.670135
  35. Raaijmakers, J. M. and Mazzola, M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50:403-424. https://doi.org/10.1146/annurev-phyto-081211-172908
  36. Rankovic, B. and Misic, M. 2008. The antimicrobial activity of the lichen substances of the lichens Cladonia furcata, Ochrolechia androgyna, Parmelia caperata and Parmelia conspresa. Biotechnol. Biotechnol. Equip. 22:1013-1016. https://doi.org/10.1080/13102818.2008.10817601
  37. Rizzo, D. M., Lichtveld, M., Mazet, J., Togami, E. and Miller, S. A. 2021. Plant health and its effects on food safety and security in a One Health framework: four case studies. One Health Outlook 3:6. https://doi.org/10.1186/s42522-021-00038-7
  38. Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. and Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430-439. https://doi.org/10.1038/s41559-018-0793-y
  39. Schmeda-Hirschmann, G., Tapia, A., Lima, B., Pertino, M., Sortino, M., Zacchino, S., Arias, A. R. and Feresin, G. E. 2008. A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother. Res. 22:349-355. https://doi.org/10.1002/ptr.2321
  40. Shrestha, G., Thompson, A., Robison, R. and St Clair, L. L. 2016. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillinresistant Staphylococcus aureus. Pharm. Biol. 54:413-418. https://doi.org/10.3109/13880209.2015.1038754
  41. Stocker-Worgotter, E. 2008. Metabolic diversity of lichenforming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25:188-200. https://doi.org/10.1039/B606983P
  42. Thomashow, L. S., Bonsall, R. F. and Weller, D. M. 1997. Antibiotic production by soil and rhizosphere microbes in situ. In: Manual of environmental microbiology, eds. by C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach and M. V. Walter, pp. 493-499. ASM Press, Washington, DC, USA.
  43. Wiegand, I., Hilpert, K. and Hancock, R. E. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3:163-175. https://doi.org/10.1038/nprot.2007.521
  44. Yang, Y., Nguyen, T. T., Jeong, M.-H., Crisan, F., Yu, Y. H., Ha, H.-H., Choi, K. H., Jeong, H. G., Jeong, T. C., Lee, K. Y., Kim, K. K., Hur, J.-S. and Kim, H. 2016. Inhibitory activity of (+)-usnic acid against non-small cell lung cancer cell motility. PLoS One 11:e0146575. https://doi.org/10.1371/journal.pone.0146575
  45. Yi, S. A., Nam, K. H., Kim, S., So, H. M., Ryoo, R., Han, J.-W., Kim, K. H. and Lee, J. 2019. Vulpinic acid controls stem cell fate toward osteogenesis and adipogenesis. Genes 11:18. https://doi.org/10.3390/genes11010018
  46. Yilmaz, M., Tay, T., Kivanc, M., Turk, H. and Turk, A. O. 2005. The antimicrobial activity of extracts of the lichen Hypogymnia tubulosa and its 3-hydroxyphysodic acid constituent. Z. Naturforsch. C J. Biosci. 60:35-38. https://doi.org/10.1515/znc-2005-1-207
  47. Yoshimura, I., Kinoshita, Y., Yamamoto, Y., Huneck, S. and Yamada, Y. 1994. Analysis of secondary metabolites from Lichen by high performance liquid chromatography with a photodiode array detector. Phytochem. Anal. 5:197-205. https://doi.org/10.1002/pca.2800050405