Browse > Article

Anticandidal Activity of the Protein Substance from Coptidis Rhizoma  

Kim Hyunkyung (College of Pharmacy Dongduk Women's University)
Lee Jue-Hee (College of Pharmacy Dongduk Women's University)
Shim Jin Kie (Korea Institute of Industrial Technology)
Han Yongmoon (College of Pharmacy Dongduk Women's University)
Publication Information
YAKHAK HOEJI / v.49, no.4, 2005 , pp. 323-329 More about this Journal
Abstract
Antimicrobial peptides are evolutionary ancient weapons for animal and plant species to depend themselves against infectious microbes. In the present study, we investigated if an antimicrobial peptide was produced from Coptidis Rhizoma. For the determination, protein substance from the medicinal plant was isolated by various preparations. Among the preparations, the protein portion dissolved in phosphate-buffered saline solution (CRP-DS) that contained the most amount of protein $(90\%)$ resulted in maximal inhibition of Candida albicans which causes local and systemic infections. Analyses by gel-electrophoresis and gel-permeation chromatography showed the CRP-DS formed a single band of approximately 11.8 KDa as molecular size. Antifungal activity of the CRP-DS was almost equivalent to antifungal activity by fluconazole, resulting in MIC (minimal inhibitory concentration) of approximately $50{\mu}g/ml$. The antifungal activity was a dose-dependent. The antifungal activity appeared to be inactivated by heat-treatment and ionic strength, respectively. In a murine model, the CRP-DS enhanced resistance of mice against disseminated candidiasis. The HPLC analysis demonstrated maximum $4\%$ of berberine as residual content in the CRP-DS preparation resulted in no influence on the antifungal activity. In addition, protein portion isolated from Phellodendri Cortex producing the alkaloid component like Coptidis Rhizoma had no such anticandidal effect. These results indicate that the protein substance from Coptidis Rhizoma was responsible for the antifungal activity.
Keywords
Coptidis Rhizoma protein; C. albicans; anticandidal activity; disseminated candidiasis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cuenca-Estrella, M., Mellado, E., Guerra, T. M., Monzon, A. and Rodriguez-Tudela, J. L. : Susceptibility of fluconazoleresistant clinical isolates of Candida spp. to echinocandin LY303366, itraconazole and amphotericin B. J. Antimicrob. Chemother. 46, 475 (2000)   DOI   ScienceOn
2 Defever, K. S., Whelan, W. L., Rogers, A. L., Beneke, E. S., Veselenak, J. M. and Soll, D R. : Candida albicans resistance to 5-fluorocytosine: frequency of partially resistant strains among clinical isolates. Antimicrob. Agents Chemother. 22, 810 (1982)   DOI   ScienceOn
3 Han, Y., Morrison, R. P. and Cutler, J. E. : A vaccine and monoclonal antibodies that enhance mouse resistance to Candida albicans vaginal infection. Infect. Immun. 66(12), 5771 (1998)
4 Han, Y. and Cutler, J. E. : Antibody response that protects against disseminated candidiasis. Infect. Immun. 63(7), 2714 (1995)
5 Lupetti, A., Nibbering, P. H, Campa, M., Del Tacca, M. and Danesi, R. : Molecular targeted treatments for fungal infections: the role of drug combinations. Trends. Mol. Med. 9(6), 269 (2003)   DOI   ScienceOn
6 Nibbering, P. H., Ravensbergen, E., Welling, M. M., van Berkel, L. A., van Berkel, P. H., Pauwels, E. K. and Nuijens, J. H. : Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibioticresistant bacteria. Infect. Immun. 69(3), 1469 (2001)   DOI   ScienceOn
7 Robinson, W E. Jr., McDougall, B., Tran, D. and Selsted, M. E. : Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63(1), 94 (1998)   DOI
8 Edgerton, M., Koshlukova, S. E., Araujo, M. W, Patel, R. C., Dong, J. and Bruenn, J. A. : Salivary histatin 5 and human neutrophil defensin 1 kill Candida aibicans via shared pathways. Antimicrob. Agents Chemother. 44(12), 3310 (2002)   DOI   ScienceOn
9 Fujimura, M., Ideguchi, M., Minami, Y., Watanabe, K. and Tadera, K. : Amino acid sequence and antimicrobial activity of chitin-binding peptides, Pp-AMP 1 and Pp-AMP 2, from Japanese bamboo shoots (Phyllostachys pubescens). Biosci. Biotechnol. Biochem. 69(3), 642 (2005)   DOI   ScienceOn
10 Tauszig, S., Jouanguy, E., Hoffmann, J. A. and Imler, J. L. : Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad Sci. USA 97(19), 10520 (2000)
11 Vora, P., Youdim, A., Thomas, L. S., Fukata, M., Tesfay, S. Y., Lukasek, K., Michelsen, K. S., Wada, A., Hirayama, T., Arditi, M. and Abreu, M. T. : Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J. Immunol. 173(9), 5398 (2004)   DOI
12 Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A. and Lewis, K. : Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad Sci. USA 97(4), 1433 (2002)
13 Han, Y. : Berberine synergy with amphotericin B against growth of Candida albicans. Dongduk Pharml. Res. 6(6), 49 (2002)
14 Cutler, J. E., Granger, B. and Han, Y. : Candida and Candidosis. ASM Press, Washington, D.C. pp. 243-256 (2003)
15 Han, Y. and Lee, J. H. : Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol. Pharm. Bull. 28(3), 541 (2005)   DOI   ScienceOn
16 Han, Y. and Lee, J. H. : A pneumococcal conjugate vaccine formula induces protection in mice against disseminated disease due to Streptococcus pneumoniae. J. Pharm. Soc. Korea 48(6), 345 (2004)
17 Han, Y., Kozel, T. R., Zhang, M. X., MacGill, R. S., Carroll, M. C. and Cutler, J. E. : Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J. Immunol. 167, 1550 (2001)   DOI
18 Loeffler, J. and Stevens, D. A. : Antifungal drug resistance. Clin. Infect. Dis. 15(Suppl. 1), S31 (2003)
19 Ashman, R. B. and Papadimitriou, J. M. : What's new in the mechanisms of host resistance to Candida albicans infection? Pathol. Res. Pract. 186(4), 527 (1990)   DOI   ScienceOn
20 Gibson, B. W., Poulter, L., Williams, D. H. and Maggio, J. E. : Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis. J. Biol. Chem. 261(12), 5341 (1986)
21 Perfect, J. R and Schell, W. A. : The new fungal opportunists are coming. Clin. Infect. Dis. 22(Suppl. 2), S112 (1996)
22 Avrahami, D. and Shai, Y. : A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J. Biol. Chem. 279(13), 12277 (2004)   DOI   ScienceOn
23 Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert H., Wenzel, R. P. and Edmond, M. B. : Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide survelliance study. Clin. Infect. Dis. 39(3), 309 (2004)   DOI   ScienceOn
24 Conly, J., Rennie, R, Johnson, J., Farah, S. and Hellman, L. : Disseminated candidacies due to amphotericin B resistant Candida albicans. J. Infect. Dis. 165, 761 (1992)   DOI   ScienceOn
25 Hernandez, S., Lopez-Ribot, J. L., Najvar, L. K., McCarthy, D. I., Bocanegra, R. and Graybill, J. R. : Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob. Agents Chemother. 48(4), 1382 (2004)   DOI   ScienceOn
26 Moore, A. J., Beazley, W. D., Bibby, M. C. and Devine, D. A. : Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 37(6), 1077 (1996)   DOI   ScienceOn
27 Zhang, L., Yu, W, He, T., Yu, J., Caffrey, R. E., Dalmasso, E. A., Fu, S., Pham, T., Mei, J., Ho, J. J., Zhang, W, Lopez, P. and Ho, D. D. : Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298(5595), 995 (2002)   DOI   ScienceOn
28 Brogden, K. A. : Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3(3), 238 (2005)   DOI   ScienceOn
29 Giacometti, A., Cirioni, O., Greganti, G., Quarta, M. amd Scalise, G. : In vitro activities of membrane-active peptides against gram-positive and gram-negative aerobic bacteria. Antimicrob. Agents Chemother. 42(12), 3320 (1998)
30 [No authors listed] Berberine : Altern. Med. Rev. 5(2), 175 (2000).
31 Broekaert, W. F., Terras, F. R., Cammue, B. P. and Osborn, R. W. : Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108(4), 1353 (1995)   DOI   ScienceOn
32 Rex, J. H., Pfaller, M. A., Lancaster, M., Odds, F. C., Bolmstrom, A. and Rinaldi, M. G. : Quality control guidelines for National Committee for Clinical Laboratory Standards-recommended broth macrodilution testing of ketoconazole and itraconazole. J. Clin. Microbiol. 34(4), 816 (1996)
33 Odds, F. C., Brown, A. J. and Gow, N. A. : Antifungal agents: mechanisms of action. Trends Microbiol. 11(6), 272 (2003)   DOI   ScienceOn
34 Han, Y., Riesselman, M. H. and Cutler, J. E. : Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect. Immun. 68(3), 1649 (2000)   DOI   ScienceOn
35 McCutcheon, A. R., Ellis, S. M., Hancock, R. E. and Towers, G. H. : Antibiotic screening of medicinal plants of the British Columbian native peoples. J. Ethnopharmacol. 37(3),213 (1992)   DOI   ScienceOn
36 Han, Y. and Cutler, J. E. : Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J. Infect. Dis. 175(5), 1169 (1997)   DOI   ScienceOn
37 Villar, C. C., Kashleva, H. and Dongari-Bagtzoglou, A. : Role of Candida albicans polymorphism in interactions with oral epithelial cells. Oral. Microbiol. Immunol. 19(4), 262 (2004)   DOI   ScienceOn
38 Vazquez-Torres, A. and Balish, E. : Macrophages in resistance to candidiasis. Microbiol. Mol. Biol. Rev. 61(2), 170 (1997)
39 Han, Y., Ulrich, M. A. and Cutler, J. E. : Candida albicans mannan extract-protein conjugates induce a protective immune response against experimental candidiasis. J. Infect. Dis. 179(6), 1477 (1999)   DOI   ScienceOn
40 Jasir, A., Kasprzykowski, F., Lindstrom, V., Schalen, C. and Grubb, A. : New antimicrobial peptide active against Grampositive pathogens. Indian. J. Med. Res. 119(Suppl), 74 (2004)
41 Freile, M. L., Giannini, E, Pucci, G., Sturniolo, A., Rodero, L., Pucci, O., Balzareti, V. and Enriz, R. D. : Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Fitoterapia. 74(7-8), 702 (2003)   DOI   ScienceOn
42 De Lucca, A. J. and Walsh, T. J. : Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 43(1), 1 (1999)   DOI