• Title/Summary/Keyword: antimicrobial potential

Search Result 647, Processing Time 0.03 seconds

Designing Inhibitor against Phospholipases A2 Enzyme through Inslico-Molecular Docking Studies

  • Ganapathy, Jagadeesan;Govindhan, Suresh;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.159-165
    • /
    • 2014
  • Pyrazole, hydroxyimino, aldehyde and isoxazole derivatives exhibit a broad spectrum of biological activities such as antimicrobial, anti-inflammatory and antitumor activities. With growing application on their synthesis and bioactivity, chemists and biologists in recent years have considerable attention on the research of these derivatives. In the view of potential importance of these derivatives, we have crystallized few of the derivatives and its report has been published. The present study focuses on docking studies of these derivatives against Phospholipases $A_2$ enzyme. This enzymes has implicated as potential targets for anti-inflammatory drug design. co-crystal structure (PDB ID: 1POE) of $PLA_2$ deposited in Protein Data Bank has been retrieved for docking analysis. Docking studies using Schrodinger's GLIDE reveals that these derivatives shows better binding energy and score in the defined active site. These results may provide a guiding role to design a lead molecule which may reduce inflamation.

Complete genome sequence of Paenibacillus konkukensis sp. nov. SK3146 as a potential probiotic strain

  • Jung, Hae-In;Park, Sungkwon;Niu, Kai-Min;Lee, Sang-Won;Kothari, Damini;Yi, Kwon Jung;Kim, Soo-Ki
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.666-670
    • /
    • 2021
  • Paenibacillus konkukensis sp. nov., SK3146 is a novel strain isolated from a pig feed. Here, we present complete genome sequence of SK3146. The genome consists of a single circular genome measuring 7,968,964 bp in size with an average guanine + cytosine (G+C) content of 53.4%. Genomic annotation revealed that the strain encodes 151 proteins related to hydrolases (EC3), which was higher than those in Bacillus subtilis and Escherichia coli. Diverse kinds of hydrolases including galactosidase, glucosidase, cellulase, lipase, xylanase, and protease were found in the genome of SK3146, coupled with one bacteriocin encoding gene. The complete genome sequence of P. konkukensis SK3146 indicates the immense probiotic potential of the strain with nutrient digestibility and antimicrobial activity functions.

The Pharmacological Properties of Silymarin and Its Constituents

  • Antika, Lucia Dwi;Dewi, Rita Marleta
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.68-77
    • /
    • 2021
  • Silymarin is a standardized extract obtained from the seeds and fruits of Silybum marianum L., or commonly called milk thistle, a member of Carduus marianum family that contains mix of flavonolignans. Some epidemiological and preclinical studies revealed that S. marianum L. has been used for herbal remedies for centuries for its pharmacological activity. In this review, pharmacological studies in vitro and in vivo of silymarin are discussed thoroughly stressing on antioxidant, antimicrobial, antiviral, and anti-carcinogenic aspects of silymarin. In addition, the protective influences of silymarin on some organs such as heart, liver, bone, and neuron tissue are reviewed as well. This review would be useful for further study regarding the potential of natural plant, notably silymarin, and its therapeutic potential in the prevention and treatment of diseases.

Complete Genome Sequence of Chryseobacterium mulctrae KACC 21234T : A Potential Proteolytic and Lipolytic Bacteria Isolated from Bovine Raw Milk

  • Elnar, Arxel G.;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.86-91
    • /
    • 2022
  • Chryseobacterium mulctrae KACC 21234T is a novel species isolated from raw bovine milk. Psychrotrophic bacteria are considered contaminants and are hypothesized to originate from the environment. In this investigation, the C. mulctrae KACC 21234T genome was determined to be 4,868,651 bp long and assembled into four contigs with a G+C ratio of 33.8%. In silico genomic analyses revealed the presence of genes encoding proteases (endopeptidase Clp, oligopeptidase b, carboxypeptidase) and lipases (phospholipase A(2), phospholipase C, acylglycerol lipase) that can catalyze the degradation of the proteins and lipids in milk, causing its quality to deteriorate. Additionally, antimicrobial resistance and putative bacteriocin genes were detected, potentially intensifying the pathogenicity of the strain. The genomic evidence presented highlights the need for improved screening protocols to minimize the potential contamination of milk by proteolytic and lipolytic psychrotrophic bacteria.

Botanical features and ethnopharmacological potential of Leonotis nepetifolia (L.) R. Br: a review

  • Gang, Roggers;Kang, Youngmin
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.3-14
    • /
    • 2022
  • Leonotis nepetifolia (L.) R. Br, commonly called dagga, klip dagga, or lion's ear, has been used to effectively treat various diseases and other health problems for a long time because of its antimicrobial, anti-inflammatory, antioxidant, and analgesic activities. Several studies have attributed these biological activities to L. nepetifolia's constituent secondary metabolites, such as alkaloids, phenolics, flavonoids, tannins, steroids, glycosides, coumarins, anthocyanins, and saponins. This review aims to examine the evidence-based ethnopharmacological uses of L. nepetifolia in the treatment of bronchial asthma, diarrhea, skin diseases, malaria, burns, cancer, diabetes mellitus, and rheumatism. However, although L. nepetifolia has great potential to treat these diseases, further isolation and identification of its therapeutic phytochemical constituents are required. In addition, the performance of its extracts and phytochemicals should be thoroughly tested in preclinical and clinical trials in order to ascertain their safety and efficacy, which will prove valuable in developing new medicines.

Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.47.1-47.13
    • /
    • 2022
  • Klebsiella pneumoniae is a gram-negative bacterium that is known for causing infection in nosocomial settings. As reported by the World Health Organization, carbapenem-resistant Enterobacteriaceae, a category that includes K. pneumoniae, are classified as an urgent threat, and the greatest concern is that these bacterial pathogens may acquire genetic traits that make them resistant towards antibiotics. The last class of antibiotics, carbapenems, are not able to combat these bacterial pathogens, allowing them to clonally expand antibiotic-resistant strains. Most antibiotics target essential pathways of bacterial cells; however, these targets are no longer susceptible to antibiotics. Hence, in our study, we focused on a hypothetical protein in K. pneumoniae that contains a DNA methylation protein domain, suggesting a new potential site as a drug target. DNA methylation regulates the attenuation of bacterial virulence. We integrated computational-aided drug design by using a bioinformatics approach to perform subtractive genomics, virtual screening, and fingerprint similarity search. We identified a new potential drug, koenimbine, which could be a novel antibiotic.

Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi

  • Sayed, Manal T. El;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.226-236
    • /
    • 2020
  • Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 ㎍/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 ㎍/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 ㎍ of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.

Wild Mushrooms: A Potential Source of Nutritional and Antioxidant Attributes with Acceptable Toxicity

  • Sharif, Sumaira;Shahid, Muhammad;Mushtaq, Muhammad;Akram, Sumia;Rashid, Ayoub
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.124-130
    • /
    • 2017
  • This paper describes in detail proximate composition, nutritional profile, phytochemical constituents, antioxidant activities, antimicrobial potential, and antihemolytic activity (towards human erythrocytes) of various fractions of wild Ganoderma lucidum. Proximate analysis established that wild G. lucidum comprises about $87.02{\pm}5.45%$ of moisture, and the remaining part is a rich source of proteins ($8.59{\pm}0.37%$), crude fiber ($54.21{\pm}1.2%$), and carbohydrate (35.16%) with smaller fat content (3.33 %). Similarly, phytochemical screening revealed the presence of flavonoids ($217.51{\pm}0.30mg/g$), ascorbic acid ($116{\pm}7.32mg/g$), phenolics ($360.72{\pm}34.07mg/g$), ${\beta}$-carotenes ($0.42{\pm}0.04{\mu}g/g$), and lycopene ($0.05{\pm}0.00{\mu}g/g$). Extracts of wild G. lucidum in various solvents provided first line protection against Escherichia coli and Pasteurella multocida in the order of ethyl acetate> ethanol> methanol> n-hexane> water. Furthermore, aqueous and methanolic extracts of wild G. lucidum were found to be safe towards human erythrocytes. Overall, wild mushroom (G. lucidum) was found to be a good source of dietary supplements, antimicrobial and antioxidant agents in the pursuance of its commercial utilization in food and pharmaceutical industries.

Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India

  • Kama, Ahmed;Shaik, Anver Basha;Kumar, C. Ganesh;Mongolla, Poornima;Rani, P. Usha;Krishna, K.V.S. Rama;Mamidyala, Suman Kumar;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • In an ongoing survey of the bioactive potential of microorganisms from Ladakh, India, the culture medium of a bacterial strain of a new Pseudomonas sp., strain ICTB-745, isolated from an alkaline soil sample collected from Leh, Ladakh, India, was found to contain metabolites that exhibited broad-spectrum antimicrobial and biosurfactant activities. Bioactivity-guided purification resulted in the isolation of four bioactive compounds. Their chemical structures were elucidated by $^1H$ and $^{13}C$ NMR, 2D-NMR (HMBC, HSQC, $^1H$,$^1H$-COSY, and DEPT-135), FT-IR, and mass spectroscopic methods, and were identified as 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), rhamnolipid-1 (RL-1), and rhamnolipid-2 (RL-2). These metabolites exhibited various biological activities like antimicrobial and efficient cytotoxic potencies against different human tumor cell lines such as HeLa, HepG2, A549, and MDA MB 231. RL-1 and RL-2 exhibited a dose-dependent antifeedant activity against Spodoptera litura, producing about 82.06% and 73.66% antifeedant activity, whereas PCA showed a moderate antifeedant activity (63.67%) at 60 ${\mu}g/cm^2$ area of castor leaf. Furthermore, PCA, RL-1, and RL-2 exhibited about 65%, 52%, and 47% mortality, respectively, against Rhyzopertha dominica at 20 ${\mu}g/ml$. This is the first report of rhamnolipids as antifeedant metabolites against Spodoptera litura and as insecticidal metabolites against Rhyzopertha dominica. The metabolites from Pseudomonas sp. strain ICTB-745 have interesting potential for use as a biopesticide in pest control programs.

Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae

  • Amruta, Narayanappa;Kumar, M.K. Prasanna;Puneeth, M.E.;Sarika, Gowdiperu;Kandikattu, Hemanth Kumar;Vishwanath, K.;Narayanaswamy, Sonnappa
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.126-138
    • /
    • 2018
  • Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant's rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides.