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Introduction 

Klebsiella pneumoniae belongs to the family of Enterobactericeae and is classified as an ex-
ample of carbapenem-resistant Enterobacteriaceae. This organism causes infections in 
nosocomial settings, posing a global threat due to the ability of bacterial pathogens to ac-
quire mobile genetic traits, making them resistant towards antibiotics. K. pneumoniae 
causes a wide range of infections, including urinary tract infections, pneumonia, and liver 
abscesses [1]. Current drugs target the cellular processes of bacterial pathogens, such as 
translation, transcription, and replication. However, bacterial pathogens can still develop 
resistance to antibiotics [2]. 

The emergence of multidrug-resistant (MDR) bacterial pathogens has become a global 
threat, as stated by the World Health Organization [3]. These pathogens can acquire ge-
netic traits that allow them to develop resistance, leading to an increase in prevalence and 
affecting human populations by lowering mortality and morbidity rates. Current antibi-
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otics are unable to effectively combat MDR pathogens, which can 
acquire mobile genetic traits that make them resistant to antibiot-
ics [4]. Carbapenems and colistin are among the most potent anti-
biotics, but some bacteria, such as K. pneumoniae carbapene-
mase-producing strains have developed resistance to them [5,6]. 

DNA adenine methyltransferase (Dam) is a promising drug tar-
get because it plays a role in the epigenetic regulatory machinery 
that helps sustain the viability of bacterial pathogens and regulates 
their pathogenicity [7]. DNA methylation is an epigenetic mecha-
nism that regulates various bacterial physiological processes, such 
as chromosome replication, DNA segregation, mismatch repair, 
transposition, and transcription, by altering the affinity and interac-
tion of regulatory proteins with DNA. Dam, which methylates the 
N-6 position of adenine in the GATC sequence, is essential for acti-
vating bacterial virulence genes. Research on antibiotic resistance 
has increasingly linked Dam, a DNA inhibitor that plays a critical 
role in bacterial pathogenesis, to antibiotic resistance. Dam is re-
quired for the replication and gene expression of the bacterium. 
The finding of Dam in epigenetics studies makes it easier to discov-
er medications for this MDR pathogen. Dam modification is also 
important in bacterial pathogenicity, as pathogenesis is influenced 
by either deficiency or overexpression, which is believed to induce 
attenuation, or premature transcription in the bacterium. Since 
most drug development focuses on virulence factors rather than 
mechanisms that maintain the viability of pathogenic bacteria, Dam 
systems can be targeted as potential antibiotic targets. The underly-
ing mechanism of Dam's biological role makes it an appealing target 
for antibiotics. In this study, we used a hypothetical protein from K. 
pneumoniae that contains a Dam domain, which has been linked to 
antibiotic resistance [8]. In this study, we used a hypothetical pro-
tein from K. pneumoniae that contains a Dam domain, which has 
been linked to antibiotic resistance. We employed bioinformatics 
techniques, including subtractive genomics, virtual screening, and 
fingerprint similarity searches, to aid in computer-aided drug dis-
covery. We identified a new potential drug, koenimbine, which can 
be further explored for drug development processes. 

Methods 

This study involved several in silico methods, including subtractive 
genomic analysis, molecular docking, and absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) testing. The work-
flow is summarized in Fig. 1. 

Retrieval of the bacterial proteome 
The UniProt database was used to obtain all available K. pneumo-

niae hypothetical protein sequences containing Dam by using the 
keyword "Klebsiella pneumoniae" and the term "n6 DNA adenine 
methyltransferase." The UniProt database is the largest protein da-
tabase with detailed annotations of proteins [9]. 

Identification and analysis of non-homologous sequences 
All retrieved hypothetical protein sequences were screened to se-
lect only non-homologous sequences. This was done using 
BLASTp (Basic Local Alignment for Protein) against the National 
Center for Biotechnology Institute database (NCBI) with a 
threshold of an e-value of <0.0005 [10]. 

Identification of essential genes 
To identify a potential drug target, the non-homologous hypothet-
ical protein must contain essential genes that are important for the 
cellular processes of the cell. These essential genes are important 
because they are involved in major constituents of the cells neces-
sary for the survival of the pathogens. The hypothetical proteins 
were screened using BLAST against the Database of Essential 
Genes (DEG) with a threshold of an e-value of <0.0001 [11].  

Broad-spectrum analysis  
To be considered a broad-spectrum hypothetical protein, a protein 
must be present in more than 25 bacterial protein kingdoms. Hy-
pothetical proteins with essential genes were screened using 
BLASTp, with an e-value of 0.005. 

Druggability analysis 
DrugBank is a comprehensive database used for in silico computa-
tional-aided drug design that includes information on drug targets 
and the actions of drugs that have been approved by the Food and 
Drug Administration (FDA) [12]. A hypothetical protein was 
screened using BLASTp against the DrugBank database with an 
e-value of 0.001 to determine if it was a druggable protein. 

Non-homology analysis against gut microbiota 
Gut microbiota plays an important role in the human gastrointes-
tinal. A homologous protein with similarity to the human gut may 
interact and bind with the gut flora proteins, leading to adverse 
pharmacokinetic side effects in the host. Hence, any homologous 
protein that was similar to the human gun was removed by using 
BLASTp with an e-value of 0.0001 [13]. 

Subcellular localization 
The subcellular localization of the hypothetical protein was deter-
mined using PSORTb 3.0, an accurate predictor of bacterial pro-
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Fig. 1. Overall workflow of the identification of proteins as putative drug targets. KEGG, Kyoto Encyclopedia of Genes and Genomes; 
STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; VFDB, Virulence Factor Database.

Retrieval of 32 protein of Klebsiella pneumoniae 
containing DNA adenine methyltransferase

BLASTp against protein sequence from VFDB
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tein subcellular localization. Gram-negative bacterial proteins have 
five major localizations: cytoplasmic, inner membrane, periplas-
mic, outer membrane, and extracellular [14]. In this study, pro-
teins located at the membrane channel and cytoplasmic were se-
lected because they are more likely to be good drug targets [15]. 
Based on the subcellular localization identification using PSORTb, 
and drug targets located in the cytoplasm were selected. 

Drug target property 
Drugs often target enzymes and are involved in binding, signaling, 
and communication. According to Bakheet [16], good drug tar-
gets have eight key properties: hydrophobicity >–142.4, amino 
acid length >550, presence of a signal motif, absence of a PEST 
motif, more than two N-glycosylated amino acids, no more than 
one O-glycosylated serine, mean pI < 7.2, and presence of a trans-
membrane helix with a cytoplasmic membrane location. 

To analyze these properties, the ExPasy server was used to de-
termine amino acid length, hydrophobicity, and pI [17]. The pres-
ence of a transmembrane helix (THMM), was identified using the 
TMHMM method (http://www.cbs.dtu.dk/~krogh/TMHMM/) 
[18], and PEST regions were identified using the Epestfind tool 
(http://emboss.cbr.nrc.ca/cgi-bin/emboss/epestfind). To analyze 
O-glycosylation, the NetOglyc program (http://www.cbs.dtu.dk/
services/NetOGlyc/) was used, while N-glycosylation was evalu-
ated using a specialized tool (http://www.cbs.dtu.dk/services/
NetNGlyc/) [19]. 

Anti-target non-homology analysis 
Anti-target non-homology analysis was performed to eliminate 
anti-target receptors [20], using an e-value of 0.005. 

Drug data properties 
The ChEMBL database provides bioactivity, molecule, target, and 
drug data from various sources, including medicinal chemistry lit-
erature, and can be used to identify good drug targets [21]. Hypo-
thetical proteins that showed more matches from the ChEMBL 
were considered to be good drug targets.  

Virulence factor analysis  
The Virulence Factor Database (VFDB) provides an extensive un-
derstanding of the virulence factors characterized by 16 dominant 
bacterial pathogens [22]. These virulence factors are crucial in caus-
ing bacterial pathogens to colonize the host and harm the host cell. 

Protein-protein interactions 
Protein functions are a key component of the cellular phenotype 

and are not independent. Networks of interacting proteins help to 
understand protein function. To obtain protein-protein interac-
tions of K. pneumoniae, the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) database was used [23]. Neigh-
boring proteins with a high confidence score (greater than 0.7) 
were included. 

Binding site prediction 
Drugs bind to specific sites on proteins. The interactions between 
these binding sites help to understand the physicochemical inter-
actions between drugs and proteins. These predictions were made 
using DoGSiteScorer, an automated algorithm for pocket and drug 
ability prediction. Pockets were predicted by mapping the protein 
to a grid and using the Gaussian difference to filter and identify 
pocket regions on the protein surface [24]. 

Metabolic pathway analysis 
Comparative metabolic pathway analysis was performed to identi-
fy unique interactions between the host and the identified protein 
using the Kyoto Encyclopedia of Genes and Genomes (KEGG). 
The output provides KEGG Orthology assignments that generate 
KEGG pathways [25]. A metabolic pathway analysis is essential to 
elucidate the predicted putative drugs. 

Gene ontology 
As the identified protein is uncharacterized, it is important to iden-
tify its specific biological role. Understanding the biological role of 
a protein provides insight into its specific function [26]. The bio-
logical role of the identified protein was assessed via Gene Ontolo-
gy (GO). a consortium for biology unification in shared eukary-
otes that constructs three ontological categories: biological pro-
cesses, molecular functions, and cellular components [27]. The 
GO classification provides essential information on biological role 
of proteins in specific organisms. 

Homology modeling 
The structures of uncharacterized proteins are not available in the 
Protein Data Bank (PDB), although structural mechanism is vital 
for an understanding of ligand interactions and channel interac-
tions with the targeted protein [28]. The targeted 3D protein 
structure was constructed by using the fully automated server 
SWISS-MODEL. First, homology modeling of the targeted pro-
tein was compared against a similar protein structure template 
[29]. The template for the identified protein was identified based 
on the protein structure of Escherichia coli bacteria containing Dam 
(PDB ID: 4RTL) [30]. The modeled protein structure was then 
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verified to check the protein quality of the stereochemical struc-
ture using PROCHECK [31], ProSA-web where errors in the 3D 
structure are recognized [32], and ERRAT. 

Ligand preparation 
Seven ligands were identified as DNA methyltransferase inhibitors 
from a literature review [33]: mahanine (PubChem ID: 375151), 
curcumin (PubChem ID: 969516), epigallocatechin gallate (Pub-
Chem ID: 65064), nanaomycin A (PubChem ID: 40586), parthe-
nolide (PubChem ID: 7251185), quercetin (PubChem ID: 
5280343), and trimethylaurintricarboxylic acid (PubChem ID: 
263071). Ligands developed for putative drug targets should not 
violate the five Lipinski rules; therefore, they were first validated 
using the SWISS-ADME server. Ligands that resulted in any viola-
tion were not further included in the analysis. 

The 2D structure was obtained in SDF format and retrieved 
from the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/). The SDF file was converted to PDB via OpenBABEL and 
SMILES (http://cactus.nci.nih.gov/services/translate/) [34]. The 
converted PDB structures were minimized to PDBQT with the 
AutoDock Vina tool. Non-polar hydrogens were added and merged 
to the ligands, and Gasteiger charges were computed. The torsion 
of the ligand was defined and saved as a PDBQT extension. 

Molecular docking 
Molecular docking is performed to identify ligands that bind with 
the lowest affinity score to develop potential putative drug targets 
by using AutoDock Vina. The default exhaustiveness was set to 1.0 
Å. An identified protein was configured by first adding all hydro-
gens to the protein and merging the non-polar hydrogens. The 
Gasteiger charges were computed and the protein was saved as a 
PDBQT file. 

A grid box was set based on the predicted binding site with the 
configuration values of the center grid box of x, y, z. The size of the 
dimension grid box was set to 30.0 Å. The binding affinity score 
was observed. 

Identification of novel inhibitors through a molecular 
fingerprint search of the prioritized ligand 
To identify novel inhibitors, a fingerprint search was performed 
using NPASS (Natural Product Activity and Species Source data-
bases) to search for compounds similar to the prioritized ligand 
based on the docking of DNA methyltransferase inhibitors [35]. 
The fingerprint search was done using by inputting the SMILES of 
prioritized ligand and setting the fingerprint type (pubchem-881 
fp) with a threshold ≥ 0.90 in the search by structure and function 

in the NPASS database. 

Virtual screening 
Virtual screening was performed to evaluate docking against clus-
ters of ligands by using AutoDock. The settings were the default 
parameters of 1.0 Å with a dimension grid of 30.0 Å. The analysis 
was performed based on the binding energy score. 

ADMET testing 
ADMET are the major processes carried out by the body as soon 
as a drug is administered [36]. These pharmacokinetic properties 
were evaluated to indicate the site of action of a drug using the 
pkCSM database [37]. The pkCSM database optimizes these 
pharmacokinetics properties by using the graph-based signatures. 

Results and Discussion 

The aim of this study was to identify novel DNA methyltransfer-
ase inhibitors for the bacterial species K. pneumoniae. All 32 hypo-
thetical proteomes of K. pneumoniae containing Dam were re-
trieved from UniProt and analyzed as potential druggable proteins. 
The proteins were characterized using a subtractive genomics ap-
proach based on the following criteria: non-homology to the hu-
man host, presence of essential genes, broad-spectrum presence in 
the bacterial kingdom, and non-homology to the human gut mi-
crobiota. The workflow and analysis summary can be found in 
Figs. 1 and 2.  

The first step of the subtractive genomics approach was non-ho-
mology analysis. Homologous proteins present in the human host 
may interact with molecules and carry unwanted toxicity. To de-
crease the risk of adverse side effects, non-homologous proteins 
were selected as putative drug targets by subjecting the protein se-
quences to BLAST with an e-value of 10-3. Essential genes are 
known to be essential for the survival of bacterial proteomes by 
maintaining cellular processes [11]. To identify essential genes in 
the bacterial proteomes, the sequences were subjected to BLASTp 
against the DEG database with an expected value of <0.0001. 

To effectively treat multiple bacterial infections, the target drug-
able protein should be common in the broad-spectrum bacterial 
kingdom [38]. Multiple target antibacterials are preferred as drugs. 
To predict whether these bacterial proteomes are broad-spectrum, 
all 32 proteins were searched using BLAST with an e-value of 
<0.0001 against the NCBI bacterial pathogens database. This result-
ed in all 32 proteins being non-homologous, containing essential 
genes, and present in a broad spectrum of the bacterial kingdom. 
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Druggability analysis 
Proteins that are druggable are defined as being able to bind 
strongly with drug molecules [39]. These are known as high-affin-
ity bindings between the protein and ligand, which result in stron-
ger intermolecular forces. A notable source of comprehensive drug 
data is DrugBank, which contains small molecule drugs, biotech 
drugs approved by the FDA, nutraceuticals, and experimental 
drug entries [12]. The targeted proteins were then searched 
against the DrugBank database using BLASTp, and of the 32 pro-
teins, only 26 were characterized as druggable. 

Human gut microbiota analysis 
The gut microbiota refers to the large population of organisms that 
colonize the intestinal tracts [40]. The gut microbiota is highly as-
sociated with human inflammatory diseases. Pathogens in the hu-
man gut microbiota co-evolved through a symbiotic relationship, 
promoting the replication of pathogens [41]. Homologous pro-
teins may lead to unintentional blockage of proteins in the gut flo-
ra, causing adverse effects [42]. To prevent this, homologous pro-
teins were removed by searching against the NCBI database of gut 
flora using BLASTp with a threshold of <0.005. Of the 26 proteins, 
19 were found to be non-homologous to the human gut. 

Subcellular localization analysis 
The characterization of subcellular localization is an important de-

terminant in the development of putative drug targets, as it reveals 
the main function of the protein [43]. The localization of a protein 
determines its function [44]. Proteins located in cytoplasmic re-
gions are more favorable as drug targets because they contain an 
abundance of enzymes, making them more feasible as drug targets. 
The cellular localization was predicted using PSORTb. Nine pro-
teins were found to be located at the cytoplasmic membrane, while 
the localization of 10 proteins was unknown. 

Drug target property analysis 
To further understand the drug properties of these nine proteins, 
they were analyzed based on eight key properties summarized by 
Bakheet and Doig [16]. These properties, which are important for 
good drug targets, include: hydrophobicity >–142.4, amino acid 
length >550, presence of a signal motif, absence of a PEST motif, 
more than 2 N-glycosylated amino acids, not more than 1 O-gly-
cosylated serine, mean pI <7.2, presence of a transmembrane helix, 
and cytoplasmic membrane location. 

One key aspect of good drug targets is high hydrophobicity. The 
balance of hydrophobicity in a protein is important for its folding 
and aggregation [45]. The higher the hydrophobicity of the pro-
tein, the better the folding, which indirectly affects its function 
[44]. The stabilization of hydrophobicity can also affect the bind-
ing affinity between the protein and ligand [46]. The results 
showed that all of the proteins had a hydrophobicity of <–0.142. 

Fig. 2. Summary of the subtractive genomic analysis of the 32 hypothetical proteins of Klebsiella pneumoniae containing DNA adenine 
methyltransferase.
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The isoelectric point (pI) of a protein, which reflects the overall 
charge of its amino acids, is another important factor to consider. 
The pI value determines the pH of the protein and its solubility. 
Higher pI values indicate that the protein is basic, while lower val-
ues indicate that it is acidic. A good drug target should have a pI val-
ue < 7.2. Three proteins were identified as having a mean pI < 7.2: 
A0A3P4EC49, A0A3P4UG76, and A0A2U0NNR3 (Table 1). 

The desired amino acid length for a drug target should be great-
er than 550 amino acids in total length. The longer the amino acid 
length, the greater the surface area of the protein for interactions 
with drugs. However, all of the drug targets had less than 550 over-
all amino acids, which may be due to the type of bacteria species. 
Signal peptide cleavage aids in the transportation of proteins of the 
endoplasmic reticulum across the membrane [47]. However, the 
results indicated that the presence of a signal peptide itself is less 
significant due to the localization of the protein in the cytoplasm. 

PEST regions are regions of a peptide that are rich in proline (P), 
glutamic acid (E), serine (S), and threonine (T). Proteins that 
have one or more PEST regions are associated with shorter intra-
cellular half-lives, as they are reported to cause protein degradation 
[48]. All of the protein sequences observed contained at least one 
PEST region. However, transmembrane helices, which are amino 
acids that flank regions, were absent from all observed proteins. 

Glycosylation is a crucial process that occurs abundantly in 
polypeptide chain modifications [49]. Bacterial proteins possess 
two glycosylation states: N-linked and O-linked glycosylation 
[50]. According to Bakheet and Doig [16], most bacterial protein 
drug targets either have more than two N-glycosylated amino ac-
ids or one or no O-glycosylated ser. Four proteins had one or no 
O-linked glycosylated serines, and three proteins had more than 
two N-linked glycosylated amino acids. 

Based on these drug properties, three proteins were selected for 
further screening as they possessed more drug target characteris-
tics: A0A3P4EC49, A0A3P4UG76, and A0A2U0NNR3 (Table 1). 

Identification of putative drug targets 
It is necessary to predict which drug candidates are likely to fail. 
Therefore, a protein needs to first be identified as either an anti-tar-

get or target protein. An anti-target protein is a protein receptor that 
causes adverse pharmacokinetic side effects when it binds to the 
drug. Here, none of the three proteins were anti-target proteins. 

Out of these three proteins, A0A2U0NNR3 had more desirable 
drug properties when analyzed using chEMBL, with 10 matches. 
It also showed the highest pocket binding score of 0.82 when ana-
lyzed using DoGSiteScorer, The protein was then further studied 
for its metabolic pathways. Based on the metabolic pathway analy-
sis on the KEGG server, the protein was found to be involved in a 
unique pathway of DNA mismatch repair. The GO analysis de-
scribing the specific biological role of the protein indicated that 
the protein functions as a site-specific DNA methyltransferase 
(adenine-specific activity). 

In order to understand the virulence mechanism, the proteins 
were queried in the VFDB. The bacterial protein virulence factors 
were as follows: VFG010749 (sdhB) Dot/Icm type IV secretion 
system effector, VFG001959 (hddC) capsular polysaccharide 
heptosyltransferase, VFG000166 (pchE) dihydroaeruginoic acid 
synthetase PchE [Py], VFG000272 (ureE) urease accessory pro-
tein (ureE), metalloch, and VFG002139 (cdsD) type III secretion 
system in the inner membrane (Table 2). 

Protein-protein interactions 
Protein-protein interactions help decipher the interactome mecha-
nisms of bacterial proteins. Neighboring proteins that scored great-
er than 0.7 were considered as high-confidence interacting pro-
teins. The significant proteins identified were tryptophanyl t-RNA 
synthetase, ribulose phosphate 3-epiramase, DNA mismatch re-
pair endonuclease MutH, three dihydro quinate synthase, and 
DamX (Fig. 3). 

Molecular docking 
Initially, the protein structure A0A2U0NNR3 was searched in the 
PDB. The search results showed that the protein structure was not 
available. The protein sequence was submitted to SWISS-MOD-

Table 1. Results of the ChEMBL approach for identified targets 
and DoGSiteScorer score pocket binding prediction of all three 
hypothetical proteins

UniProt ID ChEMBL-targets identified DoGSiteScorer
A0A3P4EC49 3 0.81
A0A3P4UG76 5 0.81
A0A2U0NNR3 10 0.82

Table 2. Virulence factors of the hypothetical protein A0A2U0NNR3

UniProt ID Virulence factor
A0A3P5S6Q8 VFG010749 (sdhB) Dot/Icm type IV secretion system  

effector
VFG001959 (hddC) capsular polysaccharide  

heptosyltransferase
VFG000166 (pchE) dihydroaeruginoic acid synthetase 

PchE [Py]
VFG000272 (ureE) urease accessory protein (ureE),  

metalloch
VFG002139 (cdsD) type III secretion system inner  

membrane r
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EL to construct the protein structure. The modeled structure was 
based on the retrieved template from the SWISS-MODEL tem-
plate library of PDB ID: 4RTL. To ensure the structural quality of 
the model, the protein was first evaluated (Fig. 4). The evaluation 
was done using PROCHECK, ERRAT, and PRoSA. PRO-
CHECK constructed a Ramachandran plot that gave 89.9% of res-

idues in the favored regions, 9.4% in the additional allowed re-
gions, and 0.4% in both the generously and disallowed regions. 
According to Kumar [51], a good-quality protein structure should 
have an overall percentage of residues in the favored and allowed 
regions of over 90%. Here, the model gives a total of 89.9% + 9.4% 
= 99.3%. 

Fig. 3. Proteins interacting with the main protein JG24_22730 at a specific site of DNA adenine methyltransferase and the functional 
partners.

Fig. 4. (A) Protein structure of A0A2U0NNR3 that was evaluated by using PyMOL. Red, helix; yellow, sheets; green, loops. (B) The active site 
is demonstrated by the region colored peach is the binding site of the protein predicted by DoGSiteScorer.

BBAA
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The Z-score value from ProSA was –7.49, indicating that the 
model was made by the X-ray crystallography method. The ER-
RAT plot gave an overall factor quality score of 84.848, which was 
an average quality score. Based on the results, the protein model 
could be inferred for further study. The ligands that were sourced 
from the literature review were first analyzed for any violations of 
Lipinski rules (Fig. 5). Only ECGC was excluded as it gave two vi-
olations of the Lipinski rules: N or O>10, NH or OH>5. 

The inhibitors were docked and defined to the predicted bind-
ing site with a dimension grid of 30 Å. Mahanine had the highest 

binding affinity score of –10.8 kcal/mol, followed by nanaomycin 
A (–10.0 kcal/mol), timethylaurintricarboxylic acid (–9.4 kcal/
mol), and quercetin (–9.3 kcal/mol). Curcumin had the lowest 
binding affinity score of –8.5 kcal/mol. The molecular docking re-
sults are tabulated in Table 3. 

Virtual screening 
Based on the binding affinity score, mahanine was further screened 
to identify a compound with a similar composition to that of mah-
anine. Mahanine is a carbazol alkaloid extracted from the plant 

Fig. 5. Structure quality assessment. (A) Ramachandran plot of the A0A2U0NNR3 protein by using SWISS-MODEL. (B) Z-score of the 
residues (ProSA). (C) Local model quality based on the sequence position. NMR, nuclear magnetic resonance.
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Table 4. Binding affinity score between the A0A2U0NNR3 protein and 22 ligands based on similarity findings and drug-likeness properties

Natural product 
name Product name PubChem ID Binding energy 

(kcal/mol)
Rotatable 

bonds
ADME TEST
(Lipinski)

NPC162484 Koenimbine 97487 –5.97 2 Yes
NPC190007 Mahanimbilol 5353739 –5.95 2 Yes; 1 violation
NPC193777 Glybomine B 11208660 –5.96 2 Yes
NPC201697 Clausenawalline C 57409124 –5.96 2 Yes
NPC205934 Mahanimbine 167963 –5.95 2 Yes; 1 violation: MLOGP>4.15
NPC209769 Claurailas B 51039826 –5.97 2 Yes
NPC212535 3-Methyl-9H-Carbazol-2-Ol 3459141 –5.94 2 Yes
NPC243834 Sid506287 375146 –5.95 2 Yes
NPC267423 n.a. 375144 –5.96 2 Yes; 1 violation: MLOGP>4.15
NPC291535 Sid506290 375149 –5.94 2 Yes
NPC43787 Grinimibine 96943 –5.92 2 Yes
NPC470931 n.a. 71717470 –5.89 2 Yes; 1 violation: MLOGP>4.15
NPC475085 Sid506292 375151 –5.91 2 Yes
NPC475112 Sid506289 375148 –5.96 2 Yes
NPC476044 n.a. 44583761 –5.89 2 Yes; 1 violation: MLOGP>4.15
NPC476106 5-(3,5-Dimethyl-3,11-dihydropyrano[3,2-a]carbazol-3-yl)-2-

methylpent-1-en-3-ol
375155 –5.96 2 Yes

NPC477532 3-[(2E)-3,7-dimethylocta-2,6-dienyl]-8-[3-[(2E)-3,7-dimethy-
locta-2,6-dienyl]-9-methoxy-3,5-dimethyl-11H-pyrano[3,2-a]
carbazol-10-yl]-3,5-dimethyl-11H-pyrano[3,2-a]carbazol-7-ol

71725436 –5.95 2 No; 2 violations: MW>500, 
MLOGP>4.15

NPC48353 Glycoborinine 10446329 –5.95 2 Yes
NPC70259 (+)-Mahanimbicine 4072580 –5.94 2 Yes; 1 violation: MLOGP>4.15
NPC70956 Euchrestine B 15060943 –5.96 2 Yes; 1 violation: MLOGP>4.15
NPC72211 (-)-O-Methylmahanine 71716235 –5.96 2 Yes; 1 violation: MLOGP>4.15
NPC94943 Siamenol 477436 –5.95 2 Yes

Table 3. Binding affinity between the A0A2U0NNR3 and the six 
ligands

Bioactive compound Binding affinity (kcal/mol)
Curcumin –8.5
Mahanine –10.8
Nanaomycin A –10.0
Parthenolide –7.6
Quercetin –9.3
Trimethylaurintricarboxylic acid –9.4

species Murraya koenigii and has been previously reported as a 
DNA methyltransferases inhibitor. In order to identify new novel 
antibiotics derived from plants, a fingerprint search was per-
formed. Based on the calculated fingerprint similarities, 22 com-
pounds were found to be similar to mahanine. The names of three 
compounds were not available. Two compounds, koenimbine and 
grinibine, were reported to be carbazole alkaloids found in M. koe-
nigii [52]. 

None of the ligands violated the Lipinski rules. The virtual screen-
ing was performed using AutoDock. The virtual screening results 

showed that koenimbine and claurailas B had the highest binding af-
finity score (–5.97 kcal/mol). Koenimbine is also one of the carba-
zole alkaloids of the same plant species and could be explored as a 
novel antibiotic (Table 3). Table 4 shows the ligand-binding score 
and drug-likeness property. 

ADMET test 
ADMET testing was further conducted for koenimbine to under-
stand the absorption, distribution, metabolism, excretion, and tox-
icity of the compound. The analysis was interpreted based on the 
guidelines of pkCSM [37]. Compound absorption analysis 
showed that the compound has high CaCO2 permeability. The 
water solubility was –4.618 log(mol/L). The compound absor-
bance in the human intestine was 93.479%, indicating a good ab-
sorption rate. Koenimbine was also demonstrated to be a P-glyco-
protein II inhibitor, with significant implications for its pharmaco-
kinetic effects.  

In terms of distribution, koenimbine was seen to have a slightly 
low distribution in the tissue plasma, as the volume of distribution 
was 0.654 L/kg. The toxicity measurements using Tetrahymena 
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pyriformis indicated that the compound was highly toxic against 
bacteria, with 0.948 μg/L. The compound was also seen to be mu-
tagenic against bacteria indicating its ability to cause detrimental 
impacts on bacteria. The results are summarized in Table 5. 

Summary 
We identified and prioritized a drug target (Dam) from 32 pro-
teins of K. pneumoniae using subtractive genomics, based on drug 
properties, pocket analysis, pathway analysis, and structure analy-

Table 5. ADMET test results for koenimbine

Value
Absorption
 Water solubility –4.618
 Numeric (log mol/L)
 CaCO2 permeabilty 1.411
 Numeric (log Papp in 10-6 cm/s)
 Intestinal absorption (human) (% absorbed) 93.479
 Skin permeability –2.742
  Numeric (log Kp)
 P-glycoprotein substrate Yes
 P-glycoprotein I inhibitor No
 P-glycoprotein II inhibitor Yes
Distribution
 VDss (human) 0.654
 Fraction unbound (human) 0.024
 BBB permeability (log BB) 0.421
 CNS permeability (log PS) –1.789
Metabolism
 CYP2D6 substrate No
 CYP3A4 substrate Yes
 CYP1A2 inhibitor Yes
 CYP2C19 inhibitor Yes
 CYP2C9 inhibitor Yes
 CYP2D6 inhibitor No
 CYP3A4 inhibitor No
Excretion
 Total clearance (log mL/min/kg) 0.477
 Renal OCT2 substrate No
Toxicity
 AMES toxicity Yes
  Max tolerated dose (human) (log mg/kg/day) –0.312
  Hepatotoxicity Yes
  Skin sensitization No
  Minnow toxicity (log mM) –0.436

ADMET, absorption, distribution, metabolism, excretion, and toxicity; BBB, 
blood-brain barrier; CNS, central nervous system; OCT2, organic cation 
transporter 2.

sis. Our proposed computational pipeline approach rapidly identi-
fied the drug target. Koenimbine, a natural bioactive chemical 
compound of M. koenigii, has the potential to be a novel antibiotic. 
Mahanine may also be a potential novel antibiotic for inhibiting 
Dam-containing bacterial pathogens. 
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