Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.11.2017.0242

Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae  

Amruta, Narayanappa (Department of Seed Science and Technology, UAS, GKVK)
Kumar, M.K. Prasanna (Department of Plant Pathology, UAS, GKVK)
Puneeth, M.E. (Department of Plant Pathology, UAS, GKVK)
Sarika, Gowdiperu (Department of Seed Science and Technology, UAS, GKVK)
Kandikattu, Hemanth Kumar (Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory)
Vishwanath, K. (Department of Seed Science and Technology, UAS, GKVK)
Narayanaswamy, Sonnappa (Department of Seed Science and Technology, UAS, GKVK)
Publication Information
The Plant Pathology Journal / v.34, no.2, 2018 , pp. 126-138 More about this Journal
Abstract
Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant's rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides.
Keywords
antimicrobial; biocontrol agents; rhizosphere; surfactin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amruta, N., Kumar, M. P., Narayanaswamy, S., Gowda, M., Channakeshava, B. C., Vishwanath, K., Puneeth, M. E. and Ranjitha, H. P. 2016. Isolation and identification of rice blast disease-suppressing antagonistic bacterial strains from the rhizosphere of rice. J. Pure Appl. Microbiol. 10:1043-1054.
2 Datanet India. 2016. Directorate of economics and statistics. URL https://indiastat.com/.
3 Babu, S. 2011. Pseudomonas fluorescens-mediated biocontrol in the post-genomic era: from lap to lab to land. Biotechnol. J. 6:488-491.   DOI
4 Betelho, G. R., Guimaraes, V., De Bonis, M., Fonseca, M. E. F., Hagler, A. N. and Hagler, L. C. M. 1998. Ecology of plant growth promoting strain of P. fluorescens colonizing the maize endosphere in tropical soil. World J. Microbiol. Biotechnol. 14:499-504.   DOI
5 Breen, S., Solomon, P. S., Bedon, F. and Vincent, D. 2015. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance. Front. Plant Sci. 6:900.
6 Cazorla, F. M., Romero, D., Garcia, A. P., Lugtenberg, B. J. J., Vicente, A. and Bloemberg, G. 2007. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J. Appl. Microbiol. 103:1950-1959.   DOI
7 Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S. and Borris, R. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140:38-44.   DOI
8 Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80:115-123.   DOI
9 Compant, S., van der Heijden, M. G. and Sessitsch, A. 2010. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 73:197-214.
10 Cordero, P., Cavigliasso, A., Principe, A., Godino, A., Jofre, E., Mori, G. and Fischer, S. 2012. Genetic diversity and antifungal activity of native Pseudomonas isolated from maize plants grown in a central region of Argentina. Syst. Appl. Microbiol. 35:342-351.   DOI
11 Fischer, S. E., Jofre, E. C., Cordero, P. V., Gutierrez Manero, F. J. and Mori, G. B. 2010. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie Van Leeuwenhoek 97:241-251.   DOI
12 Ghazanfar, M. U., Wakil, W., Sahi, S. T. and Saleem-IL-Yasin. 2009. Influence of various fungicides on the management of rice blast disease. Mycopathology 7:29-34.
13 IRRI. 2010. Rice blast. International Rice Research Institute. URL http://www.knowledgebank.irri.org/factsheetsPDFs/...RiceFact Sheets/.
14 Joshi, R. and Gardener, B. B. M. 2006. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 96:145-154.   DOI
15 Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y. T. 2010. Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145.
16 Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H. and Hitzeroth, G. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 1084-1096.
17 Mora, I., Cabrefiga, J. and Montesinos, E. 2011. Antimicrobial peptide genes in Bacillus strains from plant environments. Int. Microbiol. 14:213-223.
18 Liu, W., Lu, H. H., Wu, W., Wei, Q. K., Chen, Y. X. and Thies, J. E. 2008. Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol. Biochem. 40:475-486.   DOI
19 Mavrodi, D. V., Ksenzenko, V. N., Bonsall, R. F., Cook, R. J., Boronin, M. and Thomashow, L. S. 1998. A seven-gene locus for the synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J. Bacteriol. 180:2541-2548.
20 Miah, G., Rafii, M. Y., Ismail, M. R., Sahebi, M., Hashemi, F. S. G., Yusuff, O. and Usman, M. G. 2017. Blast disease intimidation towards rice cultivation: a review of pathogen and strategies to control. J. Anim. Plant Sci. 27:1058-1066.
21 Naureen, Z., Price, A. H., Hafeez, F. Y. and Roberts, M. R. 2009. Identification of rice blast disease-suppressing bacterial strains from the rhizosphere of rice grown in Pakistan. Crop Prot. 28:1052-1060.   DOI
22 Naureen, Z., Yasmin, S., Hameed, S., Malik, K. A. and Hafeez, F. Y. 2005. Characterization and screening of plant growth promoting bacteria isolated from maize grown in Pakistani and Indonesian. Soil. J. Basic Microbiol. 45:447-459.   DOI
23 Niranjan Raj, S., Shetty, N. P. and Shetty, H. S. 2004. Seed biopriming with P. fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int. J. Pest. Manag. 50:41-48.   DOI
24 Raju, N. S., Niranjana, S. R., Janardhana, G. R., Prakash, H. S., Shetty, H. S. and Mathur, S. B. 1999. Improvement of seed quality and field emergence of Fusarium moniliforme infected sorghum seeds using biological agents. J. Food Sci Agric. 79:206-212.   DOI
25 Pathma, J., Kennedy, R. K. and Sakthivel, N. 2011. Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In: Bacteria in agrobiology: plant growth responses, eds. by D. K. Maheshwari, pp. 77-105. Springer Berlin Heidelberg, Berlin, Heidelberg.
26 Prasanna Kumar, M. K., Amruta, N., Manjula, C. P., Puneeth, M. E. and Teli, K. 2017. Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol. Sci. Technol. 27:581-599.   DOI
27 Raaijmakers, J. M. and Mazzola, M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50:403-424.   DOI
28 Raupach, G. S. and Kloepper, J. W. 2000. Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis. 84:1073-1075.   DOI
29 Renwick, A., Campbell, R. and Coe, S. 1991. Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol. 40:524-532.   DOI
30 Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440.   DOI
31 Spence, C., Alff, E., Johnson, C., Ramos, C., Donofrio, N., Sundaresan, V. and Bais, H. 2014. Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol. 14:130-147.   DOI
32 Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56.   DOI
33 Shimoi, S., Inoue, K., Kitagawa, H., Yamasaki, M., Tsushima, S., Park, P. and Ikeda, K. 2010. Biological control for rice blast disease by employing detachment action with gelatinolytic bacteria. Biol. Control 55:85-91.   DOI
34 Souza, R. D., Ambrosini, A. and Passaglia, L. M. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38:401-419.   DOI
35 Suprapta, D. N. 2012. Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. J. ISSAAS 18:1-8.
36 Sylvester-Bradley, R., Asakawa, N., La Torraca, S., Magalhaes, F. M. M., Oliveira, L. A. and Pereira, R. M. 1982. Levantamento quantitativo de microrganismos solubilizadores de fosfato na rizosfera de gramineas e leguminosas forrageiras na Amazonia. Acta Amazonica 12:15-22.
37 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.   DOI
38 Thirupal Reddy, B., Ali Moulali, D., Anjaneyulu, E., Ramgopal, M., Hemanth Kumar, K., Lokanatha, O., Guruprasad, M. and Balaji, M. 2010. Antimicrobial screening of the plant extracts of Cardiospermum halicacabum L. against selected microbes. Ethnobotanical Leaflets 14:911-919.
39 Vincent, J. M. 1970. A manual for the practical study of the rootnodule bacteria. Burgess and Son LTB, Oxford.
40 Vidhyasekaran, P., Kamala, N., Ramanathan, A., Rajappan, K., Paranidharan, V. and Velazhahan, R. 2001. Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica 29:155-166.   DOI
41 Wang, K., Dickinson, R. E. and Liang, S. 2009. Clear sky visibility has decreased over land globally from 1973 to 2007. Proc. Natl. Acad. Sci. U.S.A. 323:1468-1470.
42 Wang, R., Ning, Y., Shi, X., He, F., Zhang, C., Fan, J., Jiang, N., Zhang, Y., Zhang, T. and Hu, Y. 2016. Immunity to rice blast disease by suppression of effector-triggered necrosis. Curr. Biol. 26:2399-2411.   DOI
43 Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C. and Wong, H. 2005. Effects of biofertilizer containing N fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155-166.   DOI