DOI QR코드

DOI QR Code

Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics

  • Received : 2022.10.05
  • Accepted : 2022.12.13
  • Published : 2022.12.31

Abstract

Klebsiella pneumoniae is a gram-negative bacterium that is known for causing infection in nosocomial settings. As reported by the World Health Organization, carbapenem-resistant Enterobacteriaceae, a category that includes K. pneumoniae, are classified as an urgent threat, and the greatest concern is that these bacterial pathogens may acquire genetic traits that make them resistant towards antibiotics. The last class of antibiotics, carbapenems, are not able to combat these bacterial pathogens, allowing them to clonally expand antibiotic-resistant strains. Most antibiotics target essential pathways of bacterial cells; however, these targets are no longer susceptible to antibiotics. Hence, in our study, we focused on a hypothetical protein in K. pneumoniae that contains a DNA methylation protein domain, suggesting a new potential site as a drug target. DNA methylation regulates the attenuation of bacterial virulence. We integrated computational-aided drug design by using a bioinformatics approach to perform subtractive genomics, virtual screening, and fingerprint similarity search. We identified a new potential drug, koenimbine, which could be a novel antibiotic.

Keywords

Acknowledgement

The authors would like to thank Management and Science University for supporting this research.

References

  1. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016; 80:629-661. https://doi.org/10.1128/MMBR.00078-15
  2. Petchiappan A, Chatterji D. Antibiotic resistance: current perspectives. ACS Omega 2017;2:7400-7409. https://doi.org/10.1021/acsomega.7b01368
  3. World Health Organization. The Evolving Threat of Antimicrobial Resistance: Options for Action. Geneva: World Health Organization, 2012.
  4. Lei C, Kumar S. Yersinia pestis antibiotic resistance: a systematic review. Osong Public Health Res Perspect 2022;13:24-36. https://doi.org/10.24171/j.phrp.2021.0288
  5. Giordano C, Barnini S, Tsioutis C, Chlebowicz MA, Scoulica EV, Gikas A, et al. Expansion of KPC-producing Klebsiella pneumoniae with various mgrB mutations giving rise to colistin resistance: the role of ISL3 on plasmids. Int J Antimicrob Agents 2018;51:260-265. https://doi.org/10.1016/j.ijantimicag.2017.10.011
  6. Li Y, Kumar S, Zhang L, Wu H. Klebsiella pneumonia and its antibiotic resistance: a bibliometric analysis. Biomed Res Int 2022;2022:1668789.
  7. Natasya U, Omeershffudin M, Ismail NA, Kumar S. Computational identification of novel inhibitors against Klebsiella pneumoniae DNA adenine methyltransferase. In: 2nd Global Congress on Bacteriology and Infectious Diseases; 2019 Jun 12-13; Bangkok, Thailand.
  8. Giacomodonato MN, Llana MN, Castaneda Mdel R, Buzzola F, Garcia MD, Calderon MG, et al. Dam methylation regulates the expression of SPI-5-encoded sopB gene in Salmonella enterica serovar Typhimurium. Microbes Infect 2014;16:615-622. https://doi.org/10.1016/j.micinf.2014.03.009
  9. The UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017;45:D158-D169. https://doi.org/10.1093/nar/gkw1099
  10. Anishetty S, Pulimi M, Pennathur G. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem 2005;29:368-378. https://doi.org/10.1016/j.compbiolchem.2005.07.001
  11. Zhang R, Ou HY, Zhang CT. DEG: a database of essential genes. Nucleic Acids Res 2004;32:D271-D272. https://doi.org/10.1093/nar/gkh024
  12. Hosen SM, Saha D, Dash R, Emran TB, Alam A, Junaid M. Drug bank: an update-resource for in silico drug discovery. Res J Pharm Dosage Forms Technol 2012;4:166-171.
  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  14. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608-1615. https://doi.org/10.1093/bioinformatics/btq249
  15. Barh D, Tiwari S, Jain N, Ali A, Santos AR, Misra AN, et al. In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev Res 2011;72:162-177. https://doi.org/10.1002/ddr.20413
  16. Bakheet TM, Doig AJ. Properties and identification of human protein drug targets. Bioinformatics 2009;25:451-457. https://doi.org/10.1093/bioinformatics/btp002
  17. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004;340:783-795. https://doi.org/10.1016/j.jmb.2004.05.028
  18. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567-580. https://doi.org/10.1006/jmbi.2000.4315
  19. Jensen LJ, Gupta R, Staerfeldt HH, Brunak S. Prediction of human protein function according to Gene Ontology categories. Bioinformatics 2003;19:635-642. https://doi.org/10.1093/bioinformatics/btg036
  20. Raman K, Yeturu K, Chandra N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2008;2:109.
  21. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, et al. ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res 2015;43: W612-W620. https://doi.org/10.1093/nar/gkv352
  22. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005;33:D325-D328.
  23. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, et al. STRING 8: a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009;37:D412-D416. https://doi.org/10.1093/nar/gkn760
  24. Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 2012;52:360-372. https://doi.org/10.1021/ci200454v
  25. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010;38:D355-D360. https://doi.org/10.1093/nar/gkp896
  26. Omeershffudin UN, Kumar S. In silico approach for mining of potential drug targets from hypothetical proteins of bacterial proteome. Int J Mol Biol 2019;4:145-152.
  27. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25:25-29. https://doi.org/10.1038/75556
  28. Kumar S. Comparative modeling and molecular docking of orphan human CYP4V2 protein with fatty acid substrates: insights into substrate specificity. Bioinformation 2011;7:360-365. https://doi.org/10.6026/97320630007360
  29. Kumar S. Molecular modeling and identification of substrate binding site of orphan human cytochrome P450 4F22. Bioinformation 2011;7:207-210. https://doi.org/10.6026/97320630007207
  30. Horton JR, Zhang X, Blumenthal RM, Cheng X. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression. Nucleic Acids Res 2015;43:4296-4308. https://doi.org/10.1093/nar/gkv251
  31. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283-291. https://doi.org/10.1107/S0021889892009944
  32. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007;35:W407-W410. https://doi.org/10.1093/nar/gkm290
  33. Saldivar-Gonzalez FI, Gomez-Garcia A, Chavez-Ponce de Leon DE, Sanchez-Cruz N, Ruiz-Rios J, Pilon-Jimenez BA, et al. Inhibitors of DNA methyltransferases from natural sources: a computational perspective. Front Pharmacol 2018;9:1144.
  34. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988;28:31-36. https://doi.org/10.1021/ci00057a005
  35. Zeng X, Zhang P, He W, Qin C, Chen S, Tao L, et al. NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res 2018;46:D1217-D1222. https://doi.org/10.1093/nar/gkx1026
  36. Zhong HA. ADMET properties: overview and current topics. In: Drug Design: Principles and Applications (Grover A, ed.). Singapore: Springer, 2017. pp. 113-133.
  37. Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 2015;58:4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  38. White TA, Kell DB. Comparative genomic assessment of novel broad-spectrum targets for antibacterial drugs. Comp Funct Genomics 2004;5:304-327. https://doi.org/10.1002/cfg.411
  39. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008;36:D901-D906. https://doi.org/10.1093/nar/gkm958
  40. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015;21:8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787
  41. Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2017;279:70-89. https://doi.org/10.1111/imr.12567
  42. Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PLoS One 2013;8:e59126.
  43. Uddin R, Siddiqui QN, Azam SS, Saima B, Wadood A. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach. Eur J Pharm Sci 2018;114:13-23. https://doi.org/10.1016/j.ejps.2017.11.014
  44. Chordia N, Lakhawat K, Kumar A. Identification of drug target properties and its validation on Helicobacter pylori. Can J Biotechnol 2017;1:44-49. https://doi.org/10.24870/cjb.2017-000101
  45. Zbilut JP, Colosimo A, Conti F, Colafranceschi M, Manetti C, Valerio M, et al. Protein aggregation/folding: the role of deterministic singularities of sequence hydrophobicity as determined by nonlinear signal analysis of acylphosphatase and Abeta(1-40). Biophys J 2003;85:3544-3557. https://doi.org/10.1016/S0006-3495(03)74774-2
  46. Snyder PW, Mecinovic J, Moustakas DT, Thomas SW 3rd, Harder M, Mack ET, et al. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci U S A 2011;108:17889-17894. https://doi.org/10.1073/pnas.1114107108
  47. Zimmermann R, Eyrisch S, Ahmad M, Helms V. Protein translocation across the ER membrane. Biochim Biophys Acta 2011;1808:912-924. https://doi.org/10.1016/j.bbamem.2010.06.015
  48. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986;234:364-368. https://doi.org/10.1126/science.2876518
  49. Nothaft H, Szymanski CM. Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 2010;8:765-778. https://doi.org/10.1038/nrmicro2383
  50. Dell A, Galadari A, Sastre F, Hitchen P. Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2010;2010:148178.
  51. Kumar S. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. BMC Res Notes 2015;8:9.
  52. de Sousa LR, Wu H, Nebo L, Fernandes JB, da Silva MF, Kiefer W, et al. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies. Bioorg Med Chem 2015;23:466-470. https://doi.org/10.1016/j.bmc.2014.12.015