• Title/Summary/Keyword: anchor pull-out test

Search Result 53, Processing Time 0.023 seconds

Evaluating the pull-out load capacity of steel bolt using Schmidt hammer and ultrasonic pulse velocity test

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • Steel bolts are used in the construction industry for a large variety of applications that range from fixing permanent installations to temporary fixtures. In the past much research has been focused on developing destructive testing techniques to estimate their pull-out load carrying capacity with very little attention to develop non-destructive techniques. In this regards the presented research work details the combined use of ultrasonic pulse velocity and Schmidt hammer tests to identify anchor bolts with faculty installation and to estimate their pull-out strength by relating it to the Schmidt hammer rebound value. From experimentation, it was observed that the load capacity of bolt depends on its embedment length, diameter, bond quality/concrete strength and alignment. Ultrasonic pulse velocity test is used to judge the quality of bond of embedded anchor bolt by relating the increase in ultrasonic pulse transit time to the presence of internal pours and cracks in the vicinity of steel bolt and the surrounding concrete. This information combined with the Schmidt hammer rebound number, R, can be used to accurately identify defective bolts which resulted in lower pull-out strength. 12 mm diameter bolts with embedment length of 70 mm and 50 mm were investigated using constant strength concrete. Pull-out load capacity versus the Schmidt hammer rebound number for each embedment length is presented.

The Method of Estimating Group Effect with Small Pull-out Tests of Screw Anchors (나선형 앵커의 실내인발시험을 이용한 무리효과 평가기법)

  • Park Si-Sam;Lee Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.123-131
    • /
    • 2005
  • In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of the anchors used in foundation system of underground structures which are applied to uplifting seepage forces. Small scaled pull-out tests in sand under saturated condition and dry condition were carried out. For estimating the group effects of the anchors, the upward displacement and the pullout load varied with spacing of the anchor were observed. The test results were compared with theoretical equation for the ultimate pull-out force. Also, the result of tests can be used to the finite element analysis program, $PENTAGON^{2D}$.

An analysis of the Behaviour of Uplift-Resisting Ground Anchors from Pull-out Tests (현장시험을 통한 부력앵커의 거동분석)

  • Lee, Cheolju;Jun, Sanghyun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • Engineering behaviour of uplift-resisting ground anchors constructed in weathered rocks has been investigated by carrying out a series of full scale pull-out tests. The anchor was to resist uplift forces (buoyancy) associated with high groundwater table acting on the basement of a rail way station. The study has included the ultimate pull-out capacity of the anchors and shear stress transfer mechanism at the anchor-ground interface. The pull-out tests were conducted by changing bonded lengths of the anchor (2~7 m) and diameter of drilled borehole (108~165 mm) to investigate their effects on the behaviour of the anchor. The measured results showed that the ultimate capacity of the anchors was increased with an increase in the bonded length, diameter of drilled borehole as expected. The ultimate capacity of the anchors deduced from the pull-out tests ranged from 392 to 1,569 kN, depending on the above-mentioned factors. This corresponds to the interface shear strength of about 227~505 kPa. Interface shear stresses deduced from the pull-out test showed that the larger the pull-out force, the larger the mobilisation of the interface shear strength. The failure mode of the anchors heavily depended on the bonded lengths of the anchors. When the bonded length was short (2~3 m), a cone-type failure was observed, whereas when the bonded length increased (5~7 m), failure developed at the grout-ground interface.

  • PDF

Horizontal Displacement Analysis of Electric Pole from Full Scale Pull-Out Test in Softground (연약지반에 시공된 전주의 실물인장실험을 통한 수평변위분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.115-126
    • /
    • 2009
  • Many electric poles in the softground have been collapsed due to external load such as typhoon wind load. In this study, the location, numbers and depths of acnchor blocks as well as depth of poles were varied to find horizontal displacement of poles through pull-out tests. The 10 types of tests were performed, and lateral displacements showed differences depending on location, numbers and depth of poles. The bending is generated in the upper part at the initial load, but it moved to central part as load increased. The maximum horizontal displacement decreased to 1/1.6 at -0.5[m] depth of anchor block and 1.3[m] additional laying depth of poles into ground. Two anchor blocks of poles are better than one acnchor block system, but one anchor block system is recommended because difference of displacement is not too large, and constructibilty is bad due to increase of excavation for anchor blocks.

Stress Analysis Acting on Electric Pole using Strain Gauge from Full Scale Pull-Out Test (실물인장실험시 변형률계를 이용한 전주에 작용하는 응력분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.49-55
    • /
    • 2010
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find stresses acting on concrete electric poles. The stresses of concrete poles are relaxed at 600~700[kg] of tensile load, and stresses are concentrated at top of pole, and spread to lower part of pole. In the concrete pole collapse test, tensile load at failure was approximately 1,400[kg], which is twice of design load. As passive zone in the soil increases, the stresses acting on concrete pole are concentrated at lower part of pole based on moment arm earth pressure distribution.

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.

Setting up Relationship between Pull-out Resistance of Helical Anchor and Rotational Penetration Torque for Methodology Development (헬리컬 앵커개발 및 적용을 위한 앵커의 회전 관입 토크와 인발저항력과의 상관관계 정립)

  • Kim, Nak-Kyeong;Kim, Young-Uk;Moon, Jun-Ho;Xin, Zhen-Hua;Gu, Kyo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.661-667
    • /
    • 2016
  • This study evaluated the potential of methodology development of the helical type anchor for soft ground applications. The rotational penetration of the helix structure might make construction-steps easy without the soil spitting and reusable rods could reduce the material cost. Removal of the anchors would be simple as a construction, which can be named the removal anchor. The anchoring resistance after construction is strongly related to the number of helixes resulting in a concise design process. The investigation involved a chamber test with soft soils. In the test, a specially designed and fabricated helical anchor and torque-driver were used to obtain the maximum pull-out resistance of the anchor after rotational penetration. As a result of the tests, The rotational torque and pull-out resistance have a proportional relationship with the strength of the prepared soils. Within the range of the study, the torque of the anchor penetrating increased with increasing pull-out resistance.

A Case Study about the Slope Collapse and Reinforcement Method on the Infinite Slope (무한사면에서의 사면붕괴와 보강대책 사례연구)

  • You Byung-Ok;Hong Jung-Pyo;Jun Jong-Hern;Lee Tae-Sun;Min Kyoung-Nam
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.146-155
    • /
    • 2006
  • The target slope of this study, formed during the construction of highway, is the very high infinite slope where sliding began along the discontinuity. Although an attempt was made to stabilize the upper part of the slope by installing the rock anchors, large scale failure was occurred at the lower part if the reinforced area. Afterwards, subsequent failures were observed two times. To investigate the cause of the failure, residual shear strength was measured by performing the direct shear test of rock specimen of the site. The anchor design was based on the pull-out test. Considering the slope surface where the undulation was severe and the variation of strength was very large, buttressing was used to obtain the required anchoring capacity.

Ultimate Uplift Capacity of Permanent Anchor Embedded in Weathered Rock (풍화암에 근입된 영구 앵커의 극한인발력)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Jin-Hwang
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.195-203
    • /
    • 2001
  • The purpose of this study is to estimate ultimate uplift capacity of permanent anchor which was cast into weathered rock. The ultimate uplift capacity was estimated from the load-displacement curve of four different anchors which have different bond length. The creep test was performed for 15minutes under the maximum load of each step in order to understand the load-transfer property of permanent anchor and to decide which anchor to choose. The destruction range of soil due to the changes in load was estimated by installing dial gauge on the ground which was cast into the weathered rock. Ultimately, the study on the behavior of the anchor case into the weathered rock was performed by comparing and analyzing the estimated result of the UUC obtained by the full scale pull out test in the field with the exsting theoretical and practical results of soil and rock anchor.

  • PDF

Supporting Characteristics of a Spiral Bolt through Pull-out Test (인발시험을 통한 스파이럴 볼트의 지보특성)

  • Kim, Jang-Won;Kang, Choo-Won;Song, Ha-Lim
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • To make large slopes or rock structures stable, supporting systems, such as anchor bolt, rock bolt and spiral bolt which are developed recently, are commonly used. In this study, in-situ pull-out tests were carried out to compare the characteristics of rock bolt that is most widely used with ones of spiral bolt that is newly developed. Re-pull-out test for the spiral bolt in which loading and unloading cycles are repeated three times showed that the maximum pull-out load is almost constant irrespective of the number of loading cycles, which may be due to no failure between spiral bolt and filler. On the other hand, the maximum pull-out load for the conventional rock bolt decreases with the number of loading cycles due to the partial failure between rock bolt and filler.