• Title/Summary/Keyword: anaerobic hydrogen production

Search Result 158, Processing Time 0.034 seconds

Isolation of Hydrogen-producing Bacteria from Granular Sludge of an Upflow Anaerobic-Sludge Blanket Reactor

  • Oh, You-Kwan;Park, Mi-So;Seol, Eun-Hee;Lee, Sang-Joon;Park, Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.54-57
    • /
    • 2003
  • H$_2$-producing bacteria were isolated from anaerobic granular sludge. Out of 72 colonies (36 grown under aerobic conditions and 36 under anaerobic conditions) arbitrarily chosen from the agar plate cultures of a Suspended sludge, 34 colonies (15 under aerobic conditions and 19 under anaerobic conditions) produced H2 under anaerobic conditions. Based on various biochemical tests and microscopic observations, they were classified into 13 groups and tentatively identified as follows: From aerobic isolates, Aeromonar spp. (7 strains), Pseudomonas spp. (3 strains), and Vibrio spp. (5 strains); from anaerobic isolates, Actinomyces spp. (11 Strains), Clostridium 5pp. (7 strains). and Porphyromonas sp. When glucose was used as the carbon substrate, all isolates showed a similar cell density and a H$_2$ production yield in the batch cultivations after 12 h (2.24-2.74 OD at 600 nm and 1.02-1.22 mol H$_2$/mol glucose, respectively). The major fermentation by-products were ethanol and acetate for the aerobic isolates, and ethanol, acetate and propionate for the anaerobic isolates. This study demonstrated that several H$_2$ producers in an anaerobic granular sludge exist En large proportions and their performance in terms of H$_2$ production is quite similar.

Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria (각종 혐기성 미생물 발효에 의한 유기산 및 수소생산)

  • Kim, Mi-Sun;Yoon, Y.S.;Sim, S.J.;Park, T.H.;Lee, J.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Clostridium butyricum, Lactobacillus amylophillus, Lactobacillus amylovorus, Lactobacillus acidophillus, AI-9 produced hydrogen and /or organic acids using glucose, lactose and starch at the anaerobic culture conditions. Cl. butyricum NCIB 9576 evolved 1,700 ml H2/L-culture broth and accumulated butyric acid, acetic acid, propionic acid and ethanol in its culture broth when lactose was used as a carbon source during 24 hrs of fermentation. L. amylovorus ATCC 33620 accumulated lactic and acetic acids and some reducing sugars when starch was used as a carbon source without hydrogen production. Instead of starch as a carbon source, L. amylovorus ATCC 33620 produced lactic acid from algal biomass during fermentation and the acid-heat or freeze-thaw pretreatment of algal biomass accelerate the lactic acid fermentation.

Microalgae Removal and Energy Production by Combined Electro-flotation and Anaerobic Hydrogen Fermentation Processes (전기부상과 혐기성 수소 발효 공정의 결합을 통한 미세조류 제거 및 에너지 생산)

  • Lee, Chae-Young;Na, Dong-Chae;Choi, Jae-Min;Kang, Doo-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2012
  • The algal bloom, resulting from eutrophication, has caused serious water quality problems in river and lake. Therefore, it has to be removed by any means including physicochemical or biological treatment for preserving water quality. This study was conducted to investigate the microalgae removal and energy production using combined electro-flotation and anaerobic hydrogen fermentation processes. The result showed that algae removal efficiency based on chlorophyll a removal increased with the current. At a current of 0.6A, the maximum microalgae removal efficiency of 95.9% was achieved. The treatability of anaerobic hydrogen fermentation was investigated to recover energy from microalgae removed by electro-flotation. The ultimate hydrogen yields of algae before and after ultrasonic pretreatment were 17.3 and 61.1 ml $H_2/g$ dcw(dry cell weight), respectively. The ultrasonic pretreatment of algae led to 3.4-fold higher $H_2$ production due to the increase of hydrolysis rate.

Bio-gas Production from Nemopilema nomurai Using Anaerobic Digestion (혐기성 소화를 이용한 노무라입깃 해파리로부터 바이오 가스 생산)

  • Kim, Ji-Youn;Lee, Sung-Mok;Kim, Jong-Hun;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • The recent bloom of a very large jellyfish Nemopilema nomurai has caused a danger to sea fishery and sea bathers. Presently, Nemopilema nomurai is thrown away through a separator system in the sea. The objective of this work was to produce bio-gas from Nemopilema nomurai by using anaerobic digestion. The bio-gas includes the hydrogen or the methane gases. It relates that Nemopilema nomurai is effectually changed into the renewable energy. When the jellyfish biomass was used as an organic carbon source the bio-gases were evolved. The aim of this study was to determine the optimal conditions for hydrogen and methane gases production according to the substrate concentrations of Nemopilema nomurai, optimal culture condition and the sludge-pretreatment without pH control. The optimal culture condition was found to be $35^{\circ}C$ and the heat-treatments of jellyfish was done at $120^{\circ}C$ for 30 min. The production rate of hydrogen and methane gas were found to be 8.8 mL/L/h, 37.2 mL/L/h from 1.5 g of dry Nemopilema nomurai.

Kinetic Study of pH Effects on Biological Hydrogen Production by a Mixed Culture

  • Jun, Yoon-Sun;Yu, Seung-Ho;Ryu, Keun-Garp;Lee, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1130-1135
    • /
    • 2008
  • The effect of pH on anaerobic hydrogen production was investigated under various pH conditions ranging from pH 3 to 10. When the modified Gompertz equation was applied to the statistical analysis of the experimental data, the hydrogen production potential and specific hydrogen production rate at pH 5 were 1,182 ml and 112.5 ml/g biomass-h, respectively. In this experiment, the maximum theoretical hydrogen conversion ratio was 22.56%. The Haldane equation model was used to find the optimum pH for hydrogen production and the maximum specific hydrogen production rate. The optimum pH predicted by this model is 5.5 and the maximum specific hydrogen production rate is 119.6 ml/g VSS-h. These data fit well with the experimented data($r^2=0.98$).

Evaluation of Characterization During Start-up of Anaerobic Digestion Via Various Seeding Methods (음식물류 폐기물의 혐기성 소화 시 식종 방법에 따른 start-up 특성 평가)

  • LEE, CHAE-YOUNG;HAN, SUN-KEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.533-539
    • /
    • 2016
  • This study was performed to evaluate the characteristics of start-up of anaerobic digestion from food waste with different inoculum ratios. The hydrogen yield was similar with different inoculum ratios. The hydrogen production rate increased with increasing inoculum ratio. But the specific hydrogen production rate decreased with increasing inoculum ratio. Total volatile fatty acids composition analysis showed that butyrate and acetate were the prevalent products in all reactors, followed by lactate and propionate. The acetate was most prevalent product in reactors at $X_0/S_0=0.080$ and 0.159. But in reactors at $X_0/S_0=0.239$ and 0.318, butyrate accounted for greater than 50% of the total volatile fatty acids.

Biological Hydrogen Production Processes (생물학적 수소생산 공정)

  • Shin, Jong-Hwan;Park, Tai Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • Biological hydrogen production processes are more environment-friendly and less energy intensive than thermochemical and electrochemical processes. The biological process can be divided into two categories: photosynthetic hydrogen production and hydrogen production by dark fermentation. Photosynthetic process produces hydrogen mainly from water and reduces $CO_2$ simultaneously. Dark fermentation is a dark and anaerobic process that produces hydrogen by fermentative bacteria from organic carbon. The article presents a survey of biological hydrogen production processes.

Hydrogen gas production by fermentation from various organic wastewater using Clostridium butyricum NCIB 9576 and Rhodopseudomonas sphaeroides E15-1 (각종 유기성 폐수로부터 Clostridium butyricum 및 Rhodopseudomonas sphaeroides에 의한 수소생산)

  • Yoon, Young-Sue;Kim, Hyun-Kyung;Ryu, Hye-Yeon;Lee, In-Gu;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.1
    • /
    • pp.29-41
    • /
    • 2000
  • Anaerobic fermentation using Clostridium butyricum NCIB 9576, and photo-fermentation using Rhodopseudomonas sphaeroides E15-1 were studied for the production of hydrogen from Makkoli, fruits (orange & apple, watermelon & melon) and Tofu wastewaters. From the Makkoli wastewater, which contained $0.94g/{\ell}$ sugars and $2.74g/{\ell}$ soluble starch, approximately $49mM\;H_2/{\ell}$ wastewater was produced during the initial 18h of the anaerobic fermentation with pH control between 6.5-7.0. Several organic acids such as butyric acid, acetic acid, propionic acid, lactic acid and ethanol were also produced. From Watemlelon and melon wastewater, which contained $43g/{\ell}$ sugars, generated about approximately $71mM\;H_2/{\ell}$ wastewater was produced during the initial 24 h of the anaerobic fermentation. Tofu wastewater, pH 6.5, containing $12.6g/{\ell}$ soluble starch and $0.74g/{\ell}$ sugars, generated about $30mM\;H_2/{\ell}$ wastewater, along with some organic acids, during the initial 24 h of anaerobic fermentation. Makkoli and Tofu wastewaters as substrates for the photo-fermentation by Rhodopseudomonas sphaeroides E15-1 produced approximately 37.9 and $22.2{\mu}M\;H_2/m{\ell}$ wastewaters, respectively for 9 days of incubation under the average of 9,000-10,000 lux illumination at the surface of reactor using tungsten halogen lamps. Orange and apple wastewater, which contained 93.4 g/l, produced approximately $13.1{\mu}M\;H_2/m{\ell}$ wastewater only for 2 days of photo-fermentation and the growth of Rhodopseudomonas sphaeroides E15-1 and hydrogen production were stopped.

  • PDF

Effect of Hydraulic Retention Time (HRT) on the Hydrogen Production and Its Dynamic Characteristics in the Anaerobic Digestion Process Using Clostridium beijerinckii Donker 1926 (Clostridium beijerinckii Donker 1926을 이용한 혐기성 소화공정에서 체류시간 변화에 의한 수소 생산과 동력학적 특성)

  • Jeong, Tae-Young;Cha, Gi-Cheol;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.162-167
    • /
    • 2007
  • Hydrogen production and its dynamics were investigated in the continuous anaerobic digestion process using Clostridium beijerinckii Donker 1926. In this work, glucose was used as a substrate and hydraulic retention times (HRT) were 0.5, 0.25 or 0.125 day. The removal efficiency of carbohydrate was over 99% under all of HRT conditions. As HRT was shorter, COD removal efficiency became lower while hydrogen content in the total gas and hydrogen production rate became higher. The cell growth yield and hydrogen production yield were 0.27 g-VSS/g-glucose and 0.26 L/g-glucose, respectively, at the steady state. It is expected that the microorganism is able to produce hydrogen when used in the wastewater treatment containing carbohydrate such as glucose. Also, the results in this study could be applied to the actual hydrogen gas production, a promising alternative energy.

Hydrogen Production from Hyperthermophilic Archaebacteria Thermococcus onnurineus NA1 (초고온성 고세균 Thermococcus onnurineus NA1에 의한 수소생산)

  • Kim, Ok-Sun;Na, Jeong-Geol;Kim, Hae-Jin;Rhee, Young-Woo;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.671-677
    • /
    • 2011
  • A hyperthermophilic archaeon, $Thermococcus$ $onnurineus$ NA1 was studied to investigate its fermentation characteristics using various carbon sources including formate, maltose and carbon monoxide during the anaerobic batch cultivation at $80^{\circ}C$. Formate was the best carbon source for cell growth and hydrogen production among others. In the batch culture on formate, it was found that the cell concentration increased exponentially by 12 hrs of culture, after which the cell growth and formate consumption was retarded. Hydrogen production was continued more than 24 hrs although the cell growth was ceased at 18 hrs. Hydrogen production rate was directly correlated with the cell growth and formate degradation up to 18 hrs, and the average hydrogen production yield was 1.05 mole-$H_2$/mole-formate. Cell growth and hydrogen production were optimized at the initial pH 6-7, while inhibited at the initial pH lower than 5 and higher than 9.