Bio-gas Production from Nemopilema nomurai Using Anaerobic Digestion

혐기성 소화를 이용한 노무라입깃 해파리로부터 바이오 가스 생산

  • Kim, Ji-Youn (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Lee, Sung-Mok (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Kim, Jong-Hun (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 김지윤 (신라대학교 의생명과학대 생명공학과) ;
  • 이성목 (신라대학교 의생명과학대 생명공학과) ;
  • 김종훈 (신라대학교 의생명과학대 생명공학과) ;
  • 이재화 (신라대학교 의생명과학대 생명공학과)
  • Received : 2010.07.13
  • Accepted : 2010.12.01
  • Published : 2010.12.31

Abstract

The recent bloom of a very large jellyfish Nemopilema nomurai has caused a danger to sea fishery and sea bathers. Presently, Nemopilema nomurai is thrown away through a separator system in the sea. The objective of this work was to produce bio-gas from Nemopilema nomurai by using anaerobic digestion. The bio-gas includes the hydrogen or the methane gases. It relates that Nemopilema nomurai is effectually changed into the renewable energy. When the jellyfish biomass was used as an organic carbon source the bio-gases were evolved. The aim of this study was to determine the optimal conditions for hydrogen and methane gases production according to the substrate concentrations of Nemopilema nomurai, optimal culture condition and the sludge-pretreatment without pH control. The optimal culture condition was found to be $35^{\circ}C$ and the heat-treatments of jellyfish was done at $120^{\circ}C$ for 30 min. The production rate of hydrogen and methane gas were found to be 8.8 mL/L/h, 37.2 mL/L/h from 1.5 g of dry Nemopilema nomurai.

Keywords

References

  1. Parawira, W., M. Murto, R. Zvauya, and B. Mattiasson (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy 29: 1811-1823. https://doi.org/10.1016/j.renene.2004.02.005
  2. Mata-alvarez, J., S. Mace, and P. Llabres (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technol. 74: 3-16. https://doi.org/10.1016/S0960-8524(00)00023-7
  3. Kim, H. W., S. K. Han, and S. S. Hang (2003) The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Management Research 21: 515-526. https://doi.org/10.1177/0734242X0302100604
  4. Wyman, C. E. and B. J. Goodman (1993) Biotechnology for production of fuels, chemicals, and materials from biomass. Appl. Biochem. and Biotechnol. 39: 1-59.
  5. Yasuda, T. (2004) On the unusual occurrence of the giant medusa Nemopilema nomurai in Japanese waters. Nippon Suisan Gakkaishi 70: 380-386.
  6. Park, J. l., H. C. Woo, and J. H. Lee (2008) Production of Bio-energy from Marine Algae: Status and Perspectives. Korean Chem. Eng. 46: 833-844.
  7. Kim, E. Y., S. H. Lee, J. S. Kim, W. D. Yoon, D. H. Lim, A. J. Hart, and W. C. Hodgson (2006) Cardiovascular effects of Nemopilema nomurai (Scyphozoa: Rhizostomeae) jellyfish venom in rats. Toxicology Letters 167: 205-211. https://doi.org/10.1016/j.toxlet.2006.09.009
  8. Kang, C., A. Munawir, M. Cha, E. T. Sohn, H. Lee, J. S. Kim, W. D. Yoon, D. Lim, and E. Kim (2009) Cytotoxicity and hemolytic activity of jellyfish Nemopilema nomurai (Scyphoza: Rhizostomeae) venom. Comparative biochemistry and physiology 150: 85-90.
  9. Uye, S.-I. (2008) Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton Benthos Res. 3: 125-131. https://doi.org/10.3800/pbr.3.125
  10. Uye, S, I., S. Ueno, J. Hiromi, K. Shiomi, T. Yasuda, N. Honda, Y. Matsushita, T. Watanabe, H. Iizumi, A. Kawabe, H. Miyake, H. Ishii, T. Inagaki, H. Nagai, M. Endo, and E. Okazaki (2005) Jellyfish blooms-ecology, biochemistry and food science for utilization. Nippon Suisan Gakkaishi 71: 968-994. https://doi.org/10.2331/suisan.71.968
  11. Lee, J.-H., H.-W. Choi, J. H. Chae, D. S. Kim, and S.-B. Lee (2006) Performace Analysis of Intake Screens in Power Plants on Mass Impingment of Marine Organisms. Ocean and Polar Research 28: 385-393. https://doi.org/10.4217/OPR.2006.28.4.385
  12. Kim, J. S., C. H. Park, T. H. Kim, M. G. Lee, S. W. Kim, and J. W. Lee (2003) Effect of various pretreatments for enhanced anaerobic digestion of waste activated sludge. J. Biosci. Bioeng. 95: 271-275. https://doi.org/10.1016/S1389-1723(03)80028-2
  13. Mizuno, O., T. Ohara, M. Shinya, and T. Noike (2000) Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Wat. Sci. Eech. 42: 345-350.
  14. Lee, J. H., D. G. Lee, J. I. Park, and J. Y. Kim (2009) Bio-hydrogen production from a marine brown algae and its bacterial diversity. Korean J. Chem. Eng. 27: 187-192. https://doi.org/10.1007/s11814-009-0300-x
  15. Lin, C. Y. and R. C. Chang (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 74: 498-500. https://doi.org/10.1002/(SICI)1097-4660(199906)74:6<498::AID-JCTB67>3.0.CO;2-D
  16. Yokoi, H., T. Tokushige, J. Hirose, S. Hayashi, and Y. Takasaki (1998) H2 production from starch by a mixed culture of clostridium butyricum and nterobacter aerogenes. Biotechnology Letters 20: 143-147. https://doi.org/10.1023/A:1005372323248
  17. Chen, C.-C., H.-P. Chen, J.-H. Wu, and C.-Y. Lin (2008) Fermentative hydrogen production at high sulfate concentration. Int. J. Hydrogen Energy 33: 1573-1578. https://doi.org/10.1016/j.ijhydene.2007.09.042
  18. Park, J. l., J. W. Lee, S. J. Sim, and J. H. Lee (2009) Production of Hydrogen from Marine Macro-algae Biomass Using Anaerobic Sewage Sludge Microflora. Biotechnol. Bioprocess Eng. 14: 307-315. https://doi.org/10.1007/s12257-008-0241-y
  19. Liu. D., D. Liu, R. J. Zeng, and I. Angelidaki (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 40: 2230-2236. https://doi.org/10.1016/j.watres.2006.03.029
  20. Fan, K. S., N. R. Kan, and J. J. Lay (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour. Technol. 97: 84-89. https://doi.org/10.1016/j.biortech.2005.02.014
  21. Ueno, Y. H., H. Fukui, and M. Goto (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ, Sci. Technol. 41: 1413-1419. https://doi.org/10.1021/es062127f
  22. Kim, S. H., S. K. Han, and S. S. Hang (2008) Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem. 43: 213-218. https://doi.org/10.1016/j.procbio.2007.11.007