• Title/Summary/Keyword: anaerobic ammonium oxidation process

Search Result 25, Processing Time 0.026 seconds

Characteristic Reactions in Anaerobic Nitrogen Removal from Piggery Waste (돈사폐수의 혐기성 질소제거공정에서 일어나는 특이반응)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • Anaerobic ammonium oxidation(ANAMMOX) is a novel process fur treatment of piggery waste with strong nitrogen. In this study, we investigated acid fermentation of organic matter, denitrificatiot reduction of sulfur compounds and P crystalization by hydroxyapatite during the treatment of wastewater with high strength of ammonium and organic matters by ANAMMOX process. Also, functions of hydroxylamine and hydrazine as intermedeates of ANAMMOX process were tested. This study reveals that various complex-reactions with anaerobic ammonium oxidation of piggery waste are happened and hydroxylamine and hydrazine play an important role in ANAMMOX reaction.

Anammox Bacteria Enrichment in Upflow Anaerobic Sludge Blanket (UASB) Reactor

  • Thuan Tran-Hung;Jahng Deok-Jin;Jung Jin-Young;Kim Dong-Jin;Kim Won-Kyoung;Park Young-Joo;Kim Ji-Eun;Ahn Dae-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.345-351
    • /
    • 2004
  • We investigated the anaerobic ammonium oxidation (anammox) reaction in a lab-stale upflow anaerobic sludge blanket (UASB) reactor. Our aim was to detect and enrich the organisms responsible for the anammox reaction using a synthetic medium that contained low concentrations of substrates (ammonium and nitrite). The reactor was inoculated with granular sludge collected from a full-scale anaerobic digestor used for treating brewery wastewater The experiment was performed during 260 days under conditions of constant ammonium concentration ($50\;mg\;NH_4^+-N/L$) and different nitrite concentrations ($50{\~}150\;mg\;NO_2-N/L$). After 200 days, anammox activity was observed in the system. The microorganisms involved in this anammox reaction were identified as Candidatus B. Anammoxidans and K. Stuttgartiensis using fluorescence in situ hybridization (FISH ) method.

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

Anaerobic Ammonium Oxidation Process in an Upflow Anaerobic Sludge Blanket Reactor with Granular Sludge Selected from an Anaerobic Digestor

  • Tran, Hung-Thuan;Park, Young-Joo;Cho, Mi-Kyeoung;Kim, Dong-Jin;Ahn, Dae-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.199-204
    • /
    • 2006
  • The purpose of this work was to evaluate the development of the anammox process by the use of granular sludge selected from a digestion reactor as a potential seed source in a lab-scale UASB (upflow anaerobic sludge blanket) reactor system. The reactor was operated for approximately 11 months and was fed by synthetic wastewater. After 200 days of feeding with $NH_4^+\;and\;NO_2^-$ as the main substrates, the biomass showed steady signs of ammonium consumption, resulting in over 60% of ammonium nitrogen removal. This report aims to present the results and to more closely examine what occurs after the onset of anammox activity, while the previous work described the start-up experiment and the presence of anammox bacteria in the enriched community using the fluorescence in situ hybridization (FISH) technique. By the last month of operation, the consumed $NO_2^--N/NH_4^+-N$ ratio in the UASB reactor was close to 1.32, the stoichiometric ratio of the anammox reaction. The obtained results from the influent-shutdown test suggested that nitrite concentration would be one key parameter that promotes the anammox reaction during the start-up enrichment of anammox bacteria from granular sludge. During the study period, the sludge color gradually changed from black to red-brownish.

Determination of the Optimum NH$_3$-N/NO$_2$-N Ratio by Anaerobic Batch Test in Anaerobic Ammonium Oxidation Process (혐기성 암모늄 산화공정에서 혐기성 회분식 실험에 의한 NH$_3$-N/NO$_2$-N의 최적비 산정)

  • Lee, Hwan-Hee;Kim, I-Jung;Jung, Jin-Young;Kim, Jee-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.700-704
    • /
    • 2008
  • Nitrite and free ammonia have been known as substrate inhibitors in anaerobic ammonium oxidation. To reduce inhibitory effect of these substrates, the NH$_3$-N/NO$_2$-N ratio in the influent could be properly controlled in anaerobic ammonium oxidation process. Five kinds of NH$_3$-N/NO$_2$-N ratio were assayed in batch to find optimum NH$_3$-N/NO$_2$-N ratio, curtailing substrate inhibition. As the results of batch test, the highest T-N removal efficiency of 88% was obtained at 1.00 : 1.30 of NH$_3$-N/NO$_2$-N ratio. In addition, rate constants for ammonium and nitrite in zero-order kinetics were found to be the highest values as 7.66 mg/L$\cdot$hr and 11.89 mg/L$\cdot$hr at 1.00 : 1.30 ratio, respectively. However, as for the specific anammox activity, the ratio of NH$_3$-N/NO$_2$-N ratio was recommended as 1 : 1.15 which can maintain the highest SAA during continuous operation and preclude the accumulation of nitrite in the reactor.

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

Presence and Growth of Ammonia-oxidizing Bacteria in Anaerobic Ammonium Oxidation Enrichment (아나목스 농후배양에서 암모니아 산화균의 자생 특성)

  • Bae, Hyokwan;Paul, Tanusree;Jung, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.220-228
    • /
    • 2020
  • Anaerobic ammonium oxidation (AMX) is a cost-efficient biological nitrogen removal process. The coexistence of ammonia-oxidizing bacteria (AOB) in an AMX reactor is an interesting research topic as a nitrogen-related bacterial consortium. In this study, a sequencing batch reactor for AMX (AMX-SBR) was operated with a conventional activated sludge. The AOB in an AMX bioreactor were identified and quantified using terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR. A T-RFLP assay based on the ammonia monooxygenase subunit A (amoA) gene sequences showed the presence of Nitrosomonas europaea-like AOB in the AMX-SBR. A phylogenetic tree based on the sequenced amoA gene showed that AOB were affiliated with the Nitrosomonas europaea/mobilis cluster. Throughout the enrichment period, the AOB population was stable with predominant Nitrosomonas europaea-like AOB. Two OTUs of amoA_SBR_JJY_20 (FJ577843) and amoA_SBR_JJY_9 (FJ577849) are similar to the clones from AMX-related environments. Real-time qPCR was used to quantify AOB populations over time. Interestingly, the exponential growth of AOB populations was observed during the substrate inhibition of the AMX bacteria. The specific growth rate of AOB under anaerobic conditions was only 0.111 d-1. The growth property of Nitrosomonas europaea-like AOB may provide fundamental information about the metabolic relationship between the AMX bacteria and AOB.

Determination optimal ratio of ammonium to nitrite in application of the ANAMMOX process in the mainstream (Mainstream ANAMMOX 공정 적용시 암모니아성 질소 대비 아질산성 질소 비율 도출 연구)

  • Lee, Dawon;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • As the concentration of nitrogen in the sewage flowing into the sewage treatment plant increases due to urbanization and industrialization, the degree of adverse effects such as eutrophication and toxicity to the aquatic ecosystem is also increasing. In order to treat sewage containing high concentration of nitrogen, various studies on the biological nitrogen removal process are being conducted. Existing biological nitrogen removal processes require significant costs for supplying oxygen and supplementing external carbon sources. In this respect, as a high-level nitrogen removal process with economic improvement is required, an anaerobic ammonium oxidation process (ANAMMOX), which is more efficient and economical than the existing nitrification and denitrification processes, has been proposed. The purpose of this study is to confirm the stability of the ANAMMOX process in the water treatment process and to derive the ratio of ammonia nitrogen (NH4+) to nitrite nitrogen (NO2-) for the implementation of the mainstream ANAMMOX process. A laboratory-scale Mainstream ANAMMOX reactor was operated by applying the ratio calculated based on the substrate ratio suggested in the previous study. In the initial range, the removal efficiency of NH4+ was 58~86%, and the average removal efficiency was 70%. In the advanced range, the removal efficiency of NH4+ was 94~99%, and the average removal efficiency was 95%. As a result of the study, as the NH4+/NO2- ratio increased, the stability of the mainstream ANAMMOX process was secured, and it was confirmed that the NH4+ removal efficiency and the total nitrogen (TN) removal efficiency increased. As a result, the results of this study are expected to be used as basic data in the application of the ANAMMOX process in the mainstream.

Effects of Temperature in Anaerobic Nitrogen Removal Process from Piggery Waste : Activities in Ranges of Low Field-temperature (돈사폐수의 혐기성 질소제거에 있어서 온도의 영향 : 낮은 현장 온도범위에서의 활성)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.258-263
    • /
    • 2006
  • ANAMMOX (Anaerobic ammonium oxidation) reactor, which was cultivated ANAMMOX bacteria in mesophilic condition ($35^{\circ}C$), was operated to investigate the effects of temperature. In $20{\sim}30^{\circ}C$ of operation condition, which was assumed as field-temperature, total N removal and $NH_4-N$ removal rate were declined from about 2.50 and $1.27kg\;N/{m^3}_{reactor}-day$ (0.06 and 0.03 kg N/kgVSS/day) to 1.62 and $0.41kg\;N/{m^3}_{reactor}-day$ (0.04 and 0.01 kg N/kgVSS/day), In this range of temperature, ANAMMOX had very low activities but acid fermentation bacteria and denitrifiers, which were competitors of substrates, had high activities relatively. Though operation temperature was higher than inhibition condition for two months, ANAMMOX activities could not been recovered once they were inhibited by low temperature. This fact was resulted from very slow doubling time of ANAMMOX bacteria. This study shows that maintenance device of optimal temperature is necessary required in field application of ANAMMOX.

Sidestream Deammonification (반류수탈암모니아 공정)

  • Park, Younghyun;Kim, Jeongmi;Choi, Wonyoung;Yu, Jaecheul;Lee, Taeho
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.109-120
    • /
    • 2018
  • Sidestream in domestic wastewater treatment plants contains high concentration of ammonium, which increases nitrogen loading rate in the mainstream. The process for deammonification consisting of partial nitritation-anaerobic ammonium oxidation (ANAMMOX) and heterotrophic denitrification is an economical method of solving this problem. Currently, about 130 full-scale deammonification plants are fully operating around the world, but none is in Korea. In order to transfer the principal information about sidestream deammonification processes to researchers and operators, we summarized basic concepts, processes type, and key influence factors (e.g., concentration of nitrogen compounds, dissolved oxygen (DO), temperature, and pH). This review emphasis on the processes of single-stage sequencing batch reactor (SBR) deammonification, which are widely used as full-scale plants. Since simultaneous processes of partial nitritation, ANAMMOX and heterotrophic denitrification occur in a single reactor, the single-stage SBR deammonification requires appropriate control/monitoring strategies for several operating factors (DO and pH mostly) to achieve efficient and stable operation. In future, AB-process consisting of A-stage (energy harvesting from organics) and B-stage (ammonium removal without organics) will be applied to the wastewater treatment process. Thus, we suggest mainstream deammonification for B-stage connected with the sidestream deammonification as seeding source of ANAMMOX. We expect that many researchers will become more interested in the sidestream deammonification.