DOI QR코드

DOI QR Code

아나목스 농후배양에서 암모니아 산화균의 자생 특성

Presence and Growth of Ammonia-oxidizing Bacteria in Anaerobic Ammonium Oxidation Enrichment

  • 배효관 (부산대학교 사회환경시스템공학과) ;
  • ;
  • 정진영 (영남대학교 환경공학과)
  • 투고 : 2020.04.30
  • 심사 : 2020.05.26
  • 발행 : 2020.05.30

초록

Anaerobic ammonium oxidation (AMX) is a cost-efficient biological nitrogen removal process. The coexistence of ammonia-oxidizing bacteria (AOB) in an AMX reactor is an interesting research topic as a nitrogen-related bacterial consortium. In this study, a sequencing batch reactor for AMX (AMX-SBR) was operated with a conventional activated sludge. The AOB in an AMX bioreactor were identified and quantified using terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR. A T-RFLP assay based on the ammonia monooxygenase subunit A (amoA) gene sequences showed the presence of Nitrosomonas europaea-like AOB in the AMX-SBR. A phylogenetic tree based on the sequenced amoA gene showed that AOB were affiliated with the Nitrosomonas europaea/mobilis cluster. Throughout the enrichment period, the AOB population was stable with predominant Nitrosomonas europaea-like AOB. Two OTUs of amoA_SBR_JJY_20 (FJ577843) and amoA_SBR_JJY_9 (FJ577849) are similar to the clones from AMX-related environments. Real-time qPCR was used to quantify AOB populations over time. Interestingly, the exponential growth of AOB populations was observed during the substrate inhibition of the AMX bacteria. The specific growth rate of AOB under anaerobic conditions was only 0.111 d-1. The growth property of Nitrosomonas europaea-like AOB may provide fundamental information about the metabolic relationship between the AMX bacteria and AOB.

키워드

참고문헌

  1. Abeliovich, A. and Vonshak, A. (1992). Anaerobic metabolism of nitrosomonas europaea, Archives of Microbiology, 158, 267-270. https://doi.org/10.1007/BF00245243
  2. Abzazou, T., Salvado, H., Cardenas-Youngs, Y., Becerril-Rodriguez, A., Cebiran, E. M. C., Huguet, A., and Araujo, R. M. (2018). Characterization of nutrient-removing microbial communities in two full-scale WWTP systems using a new qPCR approach, Science of the Total Environment, 618, 858-865. https://doi.org/10.1016/j.scitotenv.2017.08.241
  3. Anjali, G. and Sabumon, P. C. (2017). Development of simultaneous partial nitrification, anammox and denitrification (SNAD) in a non-aerated SBR, International Biodeterioration & Biodegradation, 119, 43-55. https://doi.org/10.1016/j.ibiod.2016.10.047
  4. Bae, H., Park, J. H., Jun, K. S., and Jung, J. Y. (2011). The community analysis of ammonia-oxidizing bacteria in wastewater treatment plants revealed by the combination of double labeled T-RFLP and sequencing, Journal of Environmental Science and Health Part A, 46(4), 345-354. https://doi.org/10.1080/10934529.2011.542384
  5. Bae, H., Park, K. S., Chung, Y. C., and Jung, J. Y. (2010). Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR, Process Biochemistry, 45(3), 323-334. https://doi.org/10.1016/j.procbio.2009.10.004
  6. Dalsgaard, T., Thamdrup, B., and Canfield, D. E. (2005). Anaerobic ammonium oxidation (anammox) in the marine environment, Research in microbiology, 156, 457-464. https://doi.org/10.1016/j.resmic.2005.01.011
  7. Hagopian, D. S. and Riley, J. G. (1998). A closer look at the bacteriology of nitrification, Aquacultural Engineering, 18, 223-244. https://doi.org/10.1016/S0144-8609(98)00032-6
  8. Hermansson, A. and Lindgren, P. E. (2001). Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR, Applied and Environmental Microbiology, 67, 972-976. https://doi.org/10.1128/AEM.67.2.972-976.2001
  9. Jetten, M. S. M., Strous, M., van de Pas-Schoonen, K. T., Schalk, J., van Dongen, L., van de Graaf, A. A., Logemann, S., Muyzer, G., van Loosdrecht, M. C. M., and Kuenen, J. G. (1998). The anaerobic oxidation of ammonium, FEMS Microbiology Review, 22, 421-437. https://doi.org/10.1111/j.1574-6976.1998.tb00379.x
  10. Jin, R. C., Hu, B. L., Zheng, P., Qaisar, M., Hu, A. H., and Islam, E. (2008). Quantitative comparison of stability of ANAMMOX process in different reactor configurations, Bioresource Technology, 99(6), 1603-1609. https://doi.org/10.1016/j.biortech.2007.04.018
  11. Kowalchuk, G. A., Stephen, J. R., De Boer, W., Prosser, J. I., Embley, T. M., and Woldendorp, J. W. (1997). Analysis of ammonia-oxidizing bacteria of the ${\beta}$-subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments, Applied and Environmental Microbiology, 63, 1489-1497. https://doi.org/10.1128/AEM.63.4.1489-1497.1997
  12. Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., and van Loosdrecht, M. C. (2014). Full-scale partial nitritation/anammox experiences-an application survey, Water Research, 55, 292-303. https://doi.org/10.1016/j.watres.2014.02.032
  13. Li, J., Huang, B., Wang, Q., Li, Y., Fang, W., Yan, D., Guo, M., and Cao, A. (2017). Effect of fumigation with chloropicrin on soil bacterial communities and genes encoding key enzymes involved in nitrogen cycling, Environmental Pollution, 227, 534-542. https://doi.org/10.1016/j.envpol.2017.03.076
  14. Lim, J., Lee S., and Hwang S. (2008). Use of quantitative real-time PCR to monitor population dynamics of ammonia-oxidizing bacteria in batch process, Journal of Industrial Microbiology and Biotechnology, 35, 1339-1344. https://doi.org/10.1007/s10295-008-0416-8
  15. Limpiyakorn, T., Shinohara, Y., Kurisu and F., and Yagi, O. (2005). Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo, FEMS Microbiology Ecology, 54, 205-217. https://doi.org/10.1016/j.femsec.2005.03.017
  16. Lotti, T., Van der Star, W. R. L., Kleerebezem, R., Lubello, C., and Van Loosdrecht, M. C. M. (2012). The effect of nitrite inhibition on the anammox process, Water research, 46(8), 2559-2569. https://doi.org/10.1016/j.watres.2012.02.011
  17. Mannucci, A., Caretti, C., Ducci, I., Lubello, C., Gori, R., Coppini, E., and Munz, G. (2020). Ammonia Oxidizing Bacteria (AOB) kinetic parameters estimated using the actual maximum ammonia oxidation rate, International Biodeterioration & Biodegradation, 147, 104876. https://doi.org/10.1016/j.ibiod.2019.104876
  18. Nitahara, S., Kato, S., Usui, A., Urabe, T., Suzuki, K., and Yamagishi, A. (2017). Archaeal and bacterial communities in deep-sea hydrogenetic ferromanganese crusts on old seamounts of the northwestern Pacific, PloS one, 12(2), e0173071. https://doi.org/10.1371/journal.pone.0173071
  19. Park, H. D. and Noguera, D. R. (2004). Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge, Water Research, 38, 3275-3286. https://doi.org/10.1016/j.watres.2004.04.047
  20. Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M. C., Koops, H. P., and Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidisers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys, Applied and Environmetal Microbiology, 66, 5368-5382. https://doi.org/10.1128/AEM.66.12.5368-5382.2000
  21. Qiao, S., Kawakubo, Y., Cheng, Y., Nishiyama, T., Fujii, T., and Furukawa, K. (2009). Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor, Biodegradation, 20, 117-124. https://doi.org/10.1007/s10532-008-9205-3
  22. Quan, Z. X., Rhee, S. K., Zuo, J. E., Yang, Y., Bae, J. W., Park, J. R., Lee, S. T., and Park, Y. H. (2008). Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor, Environmental Microbiology, 10, 3130-3139. https://doi.org/10.1111/j.1462-2920.2008.01642.x
  23. Rowan, A. K., Snape, J. R., Fearnside, D., Barer, M. R., Curtis, T. P., and Head, I. M. (2003). Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater, FEMS Microbiology Ecology, 43, 195-206. https://doi.org/10.1111/j.1574-6941.2003.tb01059.x
  24. Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J. W., Schleifer, K. H., and Wagner, M. (2000). Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation, Systematic and Applied Microbiology, 23(1), 93-106. https://doi.org/10.1016/S0723-2020(00)80050-8
  25. Schmidt, I., Sliekers, O., Schmid, M., Cirpus, I., Strous, M., Bock, E., Kuenen, J. G., and Jetten, M. S. M. (2002). Aerobic and anaerobic ammonium oxidizing bacteria-competitors or natural partners?, FEMS Microbiology Ecology, 39, 175-181. https://doi.org/10.1111/j.1574-6941.2002.tb00920.x
  26. Schramm, A., De Beer, D., Wagner, M., and Amann, R. (1998). Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor, Applied and Environmental Microbiology, 64, 3480-3485. https://doi.org/10.1128/AEM.64.9.3480-3485.1998
  27. Sedlacek, C. J., Giguere, A. T., Dobie, M. D., Mellbye, B. L., Ferrell, R. V., Woebken, D., Sayavedra-Soto, L. A., Bottomley, P. J., Daims, H., Wagner, M., and Pjevac, P. (2020). Transcriptomic response of Nitrosomonas europaea transitioned from ammonia-to oxygen-limited steady-state growth, mSystems, 5(1), e00562-19.
  28. Sliekers, A. O., Derwort, N., Gomez, J. L. C., Strous, M., Kuenen, J. G., and Jetten, M. S. M. (2002). Completely autotrophic nitrogen removal over nitrite in one single reactor, Water Research, 36, 2475-2482. https://doi.org/10.1016/S0043-1354(01)00476-6
  29. Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Applied Microbiology and Biotechnology, 50, 589-596. https://doi.org/10.1007/s002530051340
  30. Third, K. A., Sliekers, A. O., Kuenen, J. G., and Jetten, M. S. M. (2001). The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria, Systematic and Applied Microbiology, 24, 588-596. https://doi.org/10.1078/0723-2020-00077
  31. Wett, B., Hell, M., Nyhuis, G., Puempel, T., Takacs, I., and Murthy, S. (2010). Syntrophy of aerobic and anaerobic ammonia oxidisers, Water Science and Technology, 61(8), 1915-1922. https://doi.org/10.2166/wst.2010.969