Browse > Article
http://dx.doi.org/10.15681/KSWE.2020.36.3.220

Presence and Growth of Ammonia-oxidizing Bacteria in Anaerobic Ammonium Oxidation Enrichment  

Bae, Hyokwan (Department of Civil and Environmental Engineering, Pusan National University)
Paul, Tanusree (PRA Health Sciences)
Jung, Jin-Young (Department of Environmental Engineering, Yeungnam University)
Publication Information
Abstract
Anaerobic ammonium oxidation (AMX) is a cost-efficient biological nitrogen removal process. The coexistence of ammonia-oxidizing bacteria (AOB) in an AMX reactor is an interesting research topic as a nitrogen-related bacterial consortium. In this study, a sequencing batch reactor for AMX (AMX-SBR) was operated with a conventional activated sludge. The AOB in an AMX bioreactor were identified and quantified using terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR. A T-RFLP assay based on the ammonia monooxygenase subunit A (amoA) gene sequences showed the presence of Nitrosomonas europaea-like AOB in the AMX-SBR. A phylogenetic tree based on the sequenced amoA gene showed that AOB were affiliated with the Nitrosomonas europaea/mobilis cluster. Throughout the enrichment period, the AOB population was stable with predominant Nitrosomonas europaea-like AOB. Two OTUs of amoA_SBR_JJY_20 (FJ577843) and amoA_SBR_JJY_9 (FJ577849) are similar to the clones from AMX-related environments. Real-time qPCR was used to quantify AOB populations over time. Interestingly, the exponential growth of AOB populations was observed during the substrate inhibition of the AMX bacteria. The specific growth rate of AOB under anaerobic conditions was only 0.111 d-1. The growth property of Nitrosomonas europaea-like AOB may provide fundamental information about the metabolic relationship between the AMX bacteria and AOB.
Keywords
Ammonia-oxidizing bacteria; Anaerobic ammonium oxidation; Terminal restriction fragment length polymorphism; Sequencing; Real-time qPCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hagopian, D. S. and Riley, J. G. (1998). A closer look at the bacteriology of nitrification, Aquacultural Engineering, 18, 223-244.   DOI
2 Hermansson, A. and Lindgren, P. E. (2001). Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR, Applied and Environmental Microbiology, 67, 972-976.   DOI
3 Jetten, M. S. M., Strous, M., van de Pas-Schoonen, K. T., Schalk, J., van Dongen, L., van de Graaf, A. A., Logemann, S., Muyzer, G., van Loosdrecht, M. C. M., and Kuenen, J. G. (1998). The anaerobic oxidation of ammonium, FEMS Microbiology Review, 22, 421-437.   DOI
4 Kowalchuk, G. A., Stephen, J. R., De Boer, W., Prosser, J. I., Embley, T. M., and Woldendorp, J. W. (1997). Analysis of ammonia-oxidizing bacteria of the ${\beta}$-subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments, Applied and Environmental Microbiology, 63, 1489-1497.   DOI
5 Limpiyakorn, T., Shinohara, Y., Kurisu and F., and Yagi, O. (2005). Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo, FEMS Microbiology Ecology, 54, 205-217.   DOI
6 Lotti, T., Van der Star, W. R. L., Kleerebezem, R., Lubello, C., and Van Loosdrecht, M. C. M. (2012). The effect of nitrite inhibition on the anammox process, Water research, 46(8), 2559-2569.   DOI
7 Park, H. D. and Noguera, D. R. (2004). Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge, Water Research, 38, 3275-3286.   DOI
8 Dalsgaard, T., Thamdrup, B., and Canfield, D. E. (2005). Anaerobic ammonium oxidation (anammox) in the marine environment, Research in microbiology, 156, 457-464.   DOI
9 Anjali, G. and Sabumon, P. C. (2017). Development of simultaneous partial nitrification, anammox and denitrification (SNAD) in a non-aerated SBR, International Biodeterioration & Biodegradation, 119, 43-55.   DOI
10 Bae, H., Park, J. H., Jun, K. S., and Jung, J. Y. (2011). The community analysis of ammonia-oxidizing bacteria in wastewater treatment plants revealed by the combination of double labeled T-RFLP and sequencing, Journal of Environmental Science and Health Part A, 46(4), 345-354.   DOI
11 Jin, R. C., Hu, B. L., Zheng, P., Qaisar, M., Hu, A. H., and Islam, E. (2008). Quantitative comparison of stability of ANAMMOX process in different reactor configurations, Bioresource Technology, 99(6), 1603-1609.   DOI
12 Abeliovich, A. and Vonshak, A. (1992). Anaerobic metabolism of nitrosomonas europaea, Archives of Microbiology, 158, 267-270.   DOI
13 Abzazou, T., Salvado, H., Cardenas-Youngs, Y., Becerril-Rodriguez, A., Cebiran, E. M. C., Huguet, A., and Araujo, R. M. (2018). Characterization of nutrient-removing microbial communities in two full-scale WWTP systems using a new qPCR approach, Science of the Total Environment, 618, 858-865.   DOI
14 Bae, H., Park, K. S., Chung, Y. C., and Jung, J. Y. (2010). Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR, Process Biochemistry, 45(3), 323-334.   DOI
15 Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., and van Loosdrecht, M. C. (2014). Full-scale partial nitritation/anammox experiences-an application survey, Water Research, 55, 292-303.   DOI
16 Nitahara, S., Kato, S., Usui, A., Urabe, T., Suzuki, K., and Yamagishi, A. (2017). Archaeal and bacterial communities in deep-sea hydrogenetic ferromanganese crusts on old seamounts of the northwestern Pacific, PloS one, 12(2), e0173071.   DOI
17 Li, J., Huang, B., Wang, Q., Li, Y., Fang, W., Yan, D., Guo, M., and Cao, A. (2017). Effect of fumigation with chloropicrin on soil bacterial communities and genes encoding key enzymes involved in nitrogen cycling, Environmental Pollution, 227, 534-542.   DOI
18 Lim, J., Lee S., and Hwang S. (2008). Use of quantitative real-time PCR to monitor population dynamics of ammonia-oxidizing bacteria in batch process, Journal of Industrial Microbiology and Biotechnology, 35, 1339-1344.   DOI
19 Mannucci, A., Caretti, C., Ducci, I., Lubello, C., Gori, R., Coppini, E., and Munz, G. (2020). Ammonia Oxidizing Bacteria (AOB) kinetic parameters estimated using the actual maximum ammonia oxidation rate, International Biodeterioration & Biodegradation, 147, 104876.   DOI
20 Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M. C., Koops, H. P., and Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidisers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys, Applied and Environmetal Microbiology, 66, 5368-5382.   DOI
21 Qiao, S., Kawakubo, Y., Cheng, Y., Nishiyama, T., Fujii, T., and Furukawa, K. (2009). Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor, Biodegradation, 20, 117-124.   DOI
22 Quan, Z. X., Rhee, S. K., Zuo, J. E., Yang, Y., Bae, J. W., Park, J. R., Lee, S. T., and Park, Y. H. (2008). Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor, Environmental Microbiology, 10, 3130-3139.   DOI
23 Schramm, A., De Beer, D., Wagner, M., and Amann, R. (1998). Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor, Applied and Environmental Microbiology, 64, 3480-3485.   DOI
24 Third, K. A., Sliekers, A. O., Kuenen, J. G., and Jetten, M. S. M. (2001). The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria, Systematic and Applied Microbiology, 24, 588-596.   DOI
25 Wett, B., Hell, M., Nyhuis, G., Puempel, T., Takacs, I., and Murthy, S. (2010). Syntrophy of aerobic and anaerobic ammonia oxidisers, Water Science and Technology, 61(8), 1915-1922.   DOI
26 Rowan, A. K., Snape, J. R., Fearnside, D., Barer, M. R., Curtis, T. P., and Head, I. M. (2003). Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater, FEMS Microbiology Ecology, 43, 195-206.   DOI
27 Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J. W., Schleifer, K. H., and Wagner, M. (2000). Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation, Systematic and Applied Microbiology, 23(1), 93-106.   DOI
28 Schmidt, I., Sliekers, O., Schmid, M., Cirpus, I., Strous, M., Bock, E., Kuenen, J. G., and Jetten, M. S. M. (2002). Aerobic and anaerobic ammonium oxidizing bacteria-competitors or natural partners?, FEMS Microbiology Ecology, 39, 175-181.   DOI
29 Sedlacek, C. J., Giguere, A. T., Dobie, M. D., Mellbye, B. L., Ferrell, R. V., Woebken, D., Sayavedra-Soto, L. A., Bottomley, P. J., Daims, H., Wagner, M., and Pjevac, P. (2020). Transcriptomic response of Nitrosomonas europaea transitioned from ammonia-to oxygen-limited steady-state growth, mSystems, 5(1), e00562-19.
30 Sliekers, A. O., Derwort, N., Gomez, J. L. C., Strous, M., Kuenen, J. G., and Jetten, M. S. M. (2002). Completely autotrophic nitrogen removal over nitrite in one single reactor, Water Research, 36, 2475-2482.   DOI
31 Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Applied Microbiology and Biotechnology, 50, 589-596.   DOI