• Title/Summary/Keyword: ammonia monooxygenase (amo)

Search Result 10, Processing Time 0.026 seconds

Diversity Analysis for Archaeal amoA Gene in Marine Sediment of Svalbard, Arctic Circle (북극 Svalbard 지역 해양 퇴적물의 고세균 amoA 유전자의 다양성 분석)

  • Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.164-168
    • /
    • 2014
  • The ecosystem of the Arctic region has been increasingly affected by global warming. Archaeal ammonia monooxygenase alpha subunit coding gene (amoA) which is a key enzyme for nitrification was used to investigate the effect of runoff water of ice melt on microbial community of nitrogen cycle. The archaeal amoA genes at coastal area of Svalbard, Arctic region were PCR-amplified and sequenced after clone library construction. Analysis of archaeal amoA gene clone libraries suggested that the station 188 which is in the vicinity to the area of runoff water harbor lower ammonia-oxidizing archaeal diversity than the station 176 and 184. The average amino acid sequence identity within all archaeal amoA gene clones was 94% (with 91% nucleotide sequence identity). While all the clones of the station 188 were affiliated with Nitrosoarchaeaum clade containing strains isolated from low-salinity and terrestrial environments, about 45% of total clones of the station 176 and 184 were related to marine Nitosopumilus clade. Interestingly, other typical archaeal amoA gene clones of thaumarchaeal I.1b clade frequently retrieved from terrestrial environments was identified at station 188. Microbial community of nitrogen cycle in marine sediment might be affected by input of sediments caused by runoff glacier melt waters.

Short-Term Effect of Elevated Temperature on the Abundance and Diversity of Bacterial and Archaeal amoA Genes in Antarctic Soils

  • Han, Jiwon;Jung, Jaejoon;Park, Minsuk;Hyun, Seunghun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1187-1196
    • /
    • 2013
  • Global warming will have far-reaching effects on our ecosystem. However, its effects on Antarctic soils have been poorly explored. To assess the effects of warming on microbial abundance and community composition, we sampled Antarctic soils from the King George Island in the Antarctic Peninsula and incubated these soils at elevated temperatures of $5^{\circ}C$ and $8^{\circ}C$ for 14 days. The reduction in total organic carbon and increase in soil respiration were attributed to the increased proliferation of Bacteria, Fungi, and Archaea. Interestingly, bacterial ammonia monooxygenase (amoA) genes were predominant over archaeal amoA, unlike in many other environments reported previously. Phylogenetic analyses of bacterial and archaeal amoA communities via clone libraries revealed that the diversity of amoA genes in Antarctic ammonia-oxidizing prokaryotic communities were temperature-insensitive. Interestingly, our data also showed that the amoA of Antarctic ammonia-oxidizing bacteria (AOB) communities differed from previously described amoA sequences of cultured isolates and clone library sequences, suggesting the presence of novel Antarctic-specific AOB communities. Denitrification-related genes were significantly reduced under warming conditions, whereas the abundance of amoA and nifH increased. Barcoded pyrosequencing of the bacterial 16S rRNA gene revealed that Proteobacteria, Acidobacteria, and Actinobacteria were the major phyla in Antarctic soils and the effect of short-term warming on the bacterial community was not apparent.

Comparative analysis of core and pan-genomes of order Nitrosomonadales (Nitrosomonadales 목의 핵심유전체(core genome)와 범유전체(pan-genome)의 비교유전체학적 연구)

  • Lee, Jinhwan;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • All known genomes (N=10) in the order Nitrosomonadales were analyzed to contain 9,808 and 908 gene clusters in their pan-genome and core genome, respectively. Analyses with reference genomes belonging to other orders in Betaproteobacteria revealed that sizes of pan-genome and core genome were dependent on the number of genomes compared and the differences of genomes within a group. The sizes of pan-genomes of the genera Nitrosomonas and Nitrosospira were 7,180 and 4,586 and core genomes, 1,092 and 1,600, respectively, which implied that similarity of genomes in Nitrosospira were higher than Nitrosomonas. The genomes of Nitrosomonas contributed mostly to the size of the pan-genome and core genomes of Nitrosomonadales. COG analysis of gene clusters showed that the J (translation, ribosomal structure and biogenesis) category occupied the biggest proportions (9.7-21.0%) among COG categories in core genomes and its proportion increased in the group which genetic distances among members were high. The unclassified category (-) occupied very high proportions (34-51%) in pan-genomes. Ninety seven gene clusters existed only in Nitrosomonadales and not in reference genomes. The gene clusters contained ammonia monooxygenase (amoA and amoB) and -related genes (amoE and amoD) which were typical genes characterizing the order Nitrosomonadales while they contained significant amount (16-45%) of unclassified genes. Thus, these exclusively-conserved gene clusters might play an important role to reveal genetic specificity of the order Nitrosomonadales.

Presence and Growth of Ammonia-oxidizing Bacteria in Anaerobic Ammonium Oxidation Enrichment (아나목스 농후배양에서 암모니아 산화균의 자생 특성)

  • Bae, Hyokwan;Paul, Tanusree;Jung, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.220-228
    • /
    • 2020
  • Anaerobic ammonium oxidation (AMX) is a cost-efficient biological nitrogen removal process. The coexistence of ammonia-oxidizing bacteria (AOB) in an AMX reactor is an interesting research topic as a nitrogen-related bacterial consortium. In this study, a sequencing batch reactor for AMX (AMX-SBR) was operated with a conventional activated sludge. The AOB in an AMX bioreactor were identified and quantified using terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR. A T-RFLP assay based on the ammonia monooxygenase subunit A (amoA) gene sequences showed the presence of Nitrosomonas europaea-like AOB in the AMX-SBR. A phylogenetic tree based on the sequenced amoA gene showed that AOB were affiliated with the Nitrosomonas europaea/mobilis cluster. Throughout the enrichment period, the AOB population was stable with predominant Nitrosomonas europaea-like AOB. Two OTUs of amoA_SBR_JJY_20 (FJ577843) and amoA_SBR_JJY_9 (FJ577849) are similar to the clones from AMX-related environments. Real-time qPCR was used to quantify AOB populations over time. Interestingly, the exponential growth of AOB populations was observed during the substrate inhibition of the AMX bacteria. The specific growth rate of AOB under anaerobic conditions was only 0.111 d-1. The growth property of Nitrosomonas europaea-like AOB may provide fundamental information about the metabolic relationship between the AMX bacteria and AOB.

Diversity of Nitrifying and Denitrifying Bacteria in SMMIAR Process (완전침지형 회전매체공정 내 질산화 및 탈질 관련 미생물의 군집 분포)

  • Quan, Zhe-Xue;Lim, Bong-Su;Kang, Ho;Yoon, Kyung-Yo;Yoon, Yeo-Gyo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1014-1021
    • /
    • 2006
  • SMMIAR (Submerged Moving Media Intermittent Aeration Reactor) Process is a very efficient system which remove ammonia to nitrogen gas in one reactor. In this study, we determined the diversity of ammonia oxidizing bacteria and denitrifying bacteria using specific PCR amplification and the clone library construction. An ammonia monooxygenase gene(amoA) was analyzed to investigate the diversity of nitrifiers. Most of amoA gene fragments (27/29, 93%) were same types and they are very similar (>99%) to the sequences of Nitrosomonas europaea and other clones isolated from anoxic ammonia oxidizing reactors. ANAMMOX related bacteria have not determined by specific PCR amplification. A nitrite reductase gene(nirK) was analyzed to investigate the diversity of denitrifying bacteria. About half (9/20, 45%) of denitrifiers were clustered with Rhodobacter and most of others were clustered with Mesorhizobium (6/20, 30%) and Rhizobium (3/20, 15%). All of these nirK gene clones were clustered in alpha-Proteobacteria and this result is coincide with other system which also operate nitrification and denitrification in one reactor. The molecular monitoring of the population of nitrifiers and denitrifiers would be helpful for the system stabilization and scale-up.

Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants

  • Hong, Sun Hwa;Jeong, Hyun Duck;Jung, Bongjin;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1193-1201
    • /
    • 2012
  • The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and $_L$-serine after 192 h. The largest concentration of AOB was detected in S1 ($7.6{\times}10^6copies/{\mu}l$), followed by S2 ($3.2{\times}10^6copies/{\mu}l$), S4 ($2.8{\times}10^6copies/{\mu}l$), and S3 ($2.4{\times}10^6copies/{\mu}l$).

Removal of Endocrine Disrupting Chemicals in Wastewater by Nitrifying Sludge (질산화 슬러지에 의한 폐수 중의 내분비계 장애물질 제거)

  • Lim, Kyoung Jo;Hong, Soon Ho;Chung, Jin Suk;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.775-780
    • /
    • 2009
  • The efficacy of nitrifying sludge existed in biological nutrient removal process was examined for possible removal of endocrine disrupting chemical(EDC) in the effluent of wastewater treatment plant. Some of ammonia oxidizing bacteria causes ammonia oxidation mediated by ammonia monooxygenase(AMO) activity, which has low substrate specificity resulting in cometablic degradation of several chemicals. In this study, the removal of three model EDCs such as bisphenol A(BPA), nonylphenol(NP) and dibutyl phthalate(DBP) was studied in batch cultures using nitrifying sludge, BOD-oxidizing sludge with low nitrifying activity, and sterilized sludge. Nitrifying sludge showed higher initial removal rates in all batches of three EDCs when it was fed with ammonium as an energy source. The acclimation time was required for the removal of EDCs in batches using BOD-oxidizing sludge or nitritefed nitrifying sludge. That retardation seemed to attribute to the slow growth of cells using the EDCs while ammonium-fed nitrifying sludge could degrade EDCs through simultaneous cooxidation with ammonia oxidation. Sterilized sludge was also tested under the same conditions in order to find the contribution of physical adsorption to the removal of EDCs. About 10~20% of initial EDCs dose was removed when using sterilized sludge. Thus the biological activity is likely to play major role for the degradation of BPA, NP, and DBP rather than the physical adsorption from wastewater.

Characterization and Composition of Ammonia-Oxidizing Bacterial Community in Full- Scale Wastewater Treatment Bioreactors (실규모 하수처리 생물반응기에서 발견되는 암모니아산화균 군집조성 및 특징)

  • Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.112-118
    • /
    • 2009
  • Ammonia-oxidizing bacteria (AOB) are chemolithoautotrophs that play a key role in nitrogen removal from advanced wastewater treatment processes. Various AOB species inhabit and their community compositions vary over time in the wastewater treatment bioreactors. In this study, a hypothesis that operational and environmental conditions affect both the community compositions and the diversity of AOB in the bioreactors was proposed. To verify the hypothesis, the clone libraries based on ammonia monooxygenase subunit A were constructed using activated sludge samples from aerobic bioreactors at the Pohang, the Palo Alto, the Nine Springs, and the Marshall wastewater treatment plants (WWTPs). In those bioreactors, AOB within the Nitrosomonas europaea, N. oligotropha, N.-like, and Nitrosospira lineages were commonly found, while AOB within the N. communis, N. marina, and N. cryotolerans lineages were rarely detected in the samples. The AOB community structures were different in the bioreactors: AOB within the N. oligotropha lineage were the major microorganisms in the Pohang, the Palo Alto, and the Marshall WWTPs, while AOB within the N. europaea lineage were dominant in the Nine Springs WWTP. The correlations between the AOB community compositions of the wastewater treatment bioreactors and their operational (HRT, SRT, and MLSS) and environmental conditions (temperature, pH, COD, $NH_3$, and $NO_3{^-}$) were evaluated using a multivariate statistical analysis called the Redundancy Analysis (RDA). As a result, COD and $NO_3{^-}$ concentrations in the bioreactors were the statistically significant variables influencing the AOB community structures in the wastewater treatment bioreactors.

Characteristic study and isolation of Bacillus subtilis SRCM 101269 for application of cow manure (우분 적용을 위한 Bacillus subtilis SRCM 101269의 분리 및 특성 연구)

  • Jeon, SaeBom;Oh, HyeonHwa;Uhm, Tai-Boong;Cho, Jae-Young;Yang, Hee-Jong;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.74-83
    • /
    • 2016
  • Bacillus subtilis SRCM 101269 having safety and amo gene isolated from Korean traditional fermented food and their investigated characterization to apply the cow manure such as cellulase and xylanase activities, 16S rRNA sequencing, and ability of removal of livestock manure odor. Cow manure application results for the removal of livestock manure odor, the ammonia gas was reduced more than two-folder compared to the control group after 6 days, and reduced to less than 10 ppm after 9 days. In the case of cow manure added fowl droppings and other wood-based mixture components, ammonia gas maintained constant after 3 days of fermentation. However, in the case of sample inoculated B. subtilis SRCM 101269, ammonia gas reduced in course of fermentation time, and concentration of hydrogen sulfide also reduced for 65 ppm. Changes of nitrite concentration according to fermentation time no showed different for cow manure, however nitrite concentration in mixed livestock manure increased when compared to control. And then sulfate concentration in cow manure decreased, and no showed different when compared to the initial fermentation. No apparent change of sulfate concentration in mixed livestock manure detected. Through the previously studies, B. subtilis SRCM 101269 has high potential in industrial application manufacturing the cow manure as removal of livestock manure odor.

Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun;Choi, Min-Kyung;Ahn, Jae-Hyung;Kim, Mi-Hwa;Cho, Jae-Chang;Kim, Tae-Sung;Kim, Tae-San;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.253-261
    • /
    • 2007
  • Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.