Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4023

Diversity Analysis for Archaeal amoA Gene in Marine Sediment of Svalbard, Arctic Circle  

Park, Soo-Je (Department of Biology and Research Institute for Basic Sciences, Jeju National University)
Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.50, no.2, 2014 , pp. 164-168 More about this Journal
Abstract
The ecosystem of the Arctic region has been increasingly affected by global warming. Archaeal ammonia monooxygenase alpha subunit coding gene (amoA) which is a key enzyme for nitrification was used to investigate the effect of runoff water of ice melt on microbial community of nitrogen cycle. The archaeal amoA genes at coastal area of Svalbard, Arctic region were PCR-amplified and sequenced after clone library construction. Analysis of archaeal amoA gene clone libraries suggested that the station 188 which is in the vicinity to the area of runoff water harbor lower ammonia-oxidizing archaeal diversity than the station 176 and 184. The average amino acid sequence identity within all archaeal amoA gene clones was 94% (with 91% nucleotide sequence identity). While all the clones of the station 188 were affiliated with Nitrosoarchaeaum clade containing strains isolated from low-salinity and terrestrial environments, about 45% of total clones of the station 176 and 184 were related to marine Nitosopumilus clade. Interestingly, other typical archaeal amoA gene clones of thaumarchaeal I.1b clade frequently retrieved from terrestrial environments was identified at station 188. Microbial community of nitrogen cycle in marine sediment might be affected by input of sediments caused by runoff glacier melt waters.
Keywords
amoA; ammonia-oxidizing archaea; arctic; diversity; marine sediment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7, 1985-1995.   DOI   ScienceOn
2 Walker, C.B., de la Torre, J.R., Klotz, M.G., Urakawa, H., Pinel, N., Arp, D.J., Brochier-Armanet, C., Chain, P.S., Chan, P.P., Gollabgir, A., and et al. 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 107, 8818-8823.   DOI   ScienceOn
3 Jung, M.Y., Park, S.J., Min, D., Kim, J.S., Rijpstra, W.I., Sinninghe Damste, J.S., Kim, G.J., Madsen, E.L., and Rhee, S.K. 2011. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl. Environ. Microbiol. 77, 8635-8647.   DOI
4 Kim, J.G., Jung, M.Y., Park, S.J., Rijpstra, W.I., Sinninghe Damste, J.S., Madsen, E.L., Min, D., Kim, J.S., Kim, G.J., and Rhee, S.K. 2012. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ. Microbiol. 14, 1528-1543.   DOI   ScienceOn
5 Park, S.J., Park, B.J., and Rhee, S.K. 2008. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605-615.   DOI   ScienceOn
6 Konneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. 2005. Isolation of an autotrophic ammoniaoxidizing marine archaeon. Nature 437, 543-546.   DOI   ScienceOn
7 Mosier, A.C., Allen, E.E., Kim, M., Ferriera, S., and Francis, C.A. 2012. Genome sequence of "Candidatus Nitrosoarchaeum limnia" BG20, a low-salinity ammonia-oxidizing archaeon from the San Francisco Bay estuary. J. Bacteriol. 194, 2119-2120.   DOI
8 Park, S.J., Park, B.J., Jung, M.Y., Kim, S.J., Chae, J.C., Roh, Y., Forwick, M., Yoon, H.I., and Rhee, S.K. 2011. Influence of deglaciation on microbial communities in marine sediments off the coast of Svalbard, Arctic Circle. Microb. Ecol. 62, 537-548.   DOI
9 Park, B.J., Park, S.J., Yoon, D.N., Schouten, S., Sinninghe Damste, J.S., and Rhee, S.K. 2010. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 76, 7575-7587.   DOI   ScienceOn
10 Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., and Longino, J.T. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3-21.   DOI
11 Dierssen, H.M., Smith, R.C., and Vernet, M. 2002. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc. Natl. Acad. Sci. USA 99, 1790-1795.   DOI
12 Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S., and Griffiths, M. 2008. Increased runoff from melt from the Greenland ice sheet: a response to global warming. J. Climate 21, 331-341.   DOI   ScienceOn
13 Forwick, M., Vorren, T.O., Hald, M., Korsun, S., Roh, Y., Vogt, C., and Yoo, K.C. 2010. Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen. Geological Society, London, Special Publications 344, 163-193.
14 Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102, 14683-14688.   DOI
15 French, E., Kozlowski, J.A., Mukherjee, M., Bullerjahn, G., and Bollmann, A. 2012. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl. Environ. Microbiol. 78, 5773-5780.   DOI
16 Holte, B. and Gulliksen, B. 1998. Common macrofaunal dominant species in the sediments of some north Norwegian and Svalbard glacial fjords. Polar Biology 19, 375-382.   DOI   ScienceOn
17 Svendsen, H., Beszczynska-Moller, A., Hagen, J.O., Lefauconnier, B., Tverberg, V., Gerland, S., Orbok, J.B., Bischof, K., Papucci, C., Zajaczkowski, M., and et al. 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133-166.   DOI   ScienceOn
18 Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013 MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI   ScienceOn
19 Wilfried, H., Martin, H., and Stephan, S. 1998. Into the second century of worldwide glacier monitoring: prospects and strategies. Paris: UNESCO.