• Title/Summary/Keyword: aluminum oxide layer

Search Result 256, Processing Time 0.036 seconds

The Fabrication of Pt Micro Heater Using Aluminum Oxide as Medium Layer and Its Thermal Characteristics (알루미늄산화막을 매개층으로 이용한 백금 미세발열체의 제작과 발열특성)

  • 노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.331-334
    • /
    • 1997
  • The electrical and physical charateristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering, respectively, were analysed with increasing annealing temperature(400~80$0^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin finns was improved. But these properties of aluminum oxide and Pt thin finns on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. The thermal characteristics of Pt micro heater were analysed with Pt-RTD integrated on the same substrate. In the analysis of properties of Pt micro heater. active area was smaller size, Pt micro heater had better thermal characteristics. Temperature of Pt micro heater fabricated on membrane was up to 34$0^{\circ}C$ with 1.2watts of the heating power due to reduction of the external thermal loss.

  • PDF

Enhancement of Condensation Heat Transfer of Anodized Aluminum by Teflon Coating and Oil-Impregnation (테플론 코팅과 오일 담지를 이용한 알루미늄 양극산화피막의 응축 열전달 향상)

  • Kang, Minjoo;Lee, Jonghoon;Cha, Soojin;Shin, Yeaji;Kim, Donghyun;Kim, Kyung-Ja;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.90-95
    • /
    • 2021
  • Surface modification technique enabling the control of condensation provides various benefit in various engineering systems, such as heat transfer, desalination, power plants, and so on. In this study, lubricant oil-impregnation into Teflon-coated nanoporous anodic oxide layer of aluminum to enhance a de-wetting and mobility of water droplet on surface. Due to the surface treatment improving water-repellency, the condensation mode is changed to dropwise, thus the frequency of sliding condensed water droplet on surface is increased. For these reasons, the surface of oil-impregnated Teflon-coated nanoporous anodic aluminum oxide shows significantly enhanced condensation heat transfer compared to bare aluminum surface. In addition, the porosity of anodic aluminum oxide affected the mobility of water droplet even with oil-impregnation and Teflon-coating, indicating that the optimization of porous structure of anodic oxide is required for maximizing the condensation heat transfer.

Characterization of Aluminum Oxide Thin Film Grown by Atomic Layer Deposition for Flexible Display Barrier Layer Application

  • Kopark, Sang-Hee;Lee, Jeong-Ik;Yang, Yong-Suk;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.746-749
    • /
    • 2002
  • Aluminum oxide thin films were grown on a poly ethylene naphthalate (PEN) substrate at the temperature of 100$^{\circ}C$ using atomic layer deposition method. The film showed very flat morphology and good adhesion to the substrate. The visible spectrum showed higher transmittance in the range from 400 nm to 800 nm than that of PEN. The water vapor transmission value measured with MOCON for 230nm oxide-deposited PEN was 0.62g/$m^2$/day @ 38$^{\circ}C$, while that of PEN substrate was 1.4g/$m^2$/day @ 38$^{\circ}C$.

  • PDF

Electrochemical Properties of Metal Aluminum and Its Application (금속알루미늄의 전기화학적 성질과 응용)

  • Tak, Yongsug;Kang, Jinwook;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.335-342
    • /
    • 2006
  • Metal aluminum, of which has a low standard reduction potential, participates in the electrochemical oxidation reaction and results in the structural change and accompanying property variation of aluminum and its oxide film. Aluminum was electrochemically etched in acid solution and the surface area was magnified by the formation of high density etch pits. Etched aluminum was covered with a compact and dense dielectric oxide film by anodization and applied to the capacitor electrode. Anodization of aluminum in acid solution at low temperature makes a nanoporous aluminum oxide layer which can be used for the fabrication template of nanostructural materials. Electrochemical characteristics of aluminum turn the metal aluminum into functional materials and it will bring the diverse applications of metal aluminum.

Microstructural Analysis on Oxide Film of Al2024 Exposed to Atmospheric Conditions (대기 노출된 Al2024 알루미늄 합금 산화막에 대한 미세조직 분석)

  • Kwon, Daeyeop;Choi, Wonjun;Bahn, Chi Bum
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.62-70
    • /
    • 2021
  • Al2024 aluminum alloy specimens were exposed to atmospheric conditions for maximum 24 months and analyzed by electron microscopes to characterize their corrosion behavior and oxide film characteristics. As the exposure time increased from 12 months to 24 months, the number of pitting sites per 1 mm2 increased from ~100 to ~200. The uniform oxidation (or non-pitting) region of the 12-month exposure specimen showed 30~120 nm thick oxide layer, whereas the 24-month exposure specimen showed 170~200 nm thick oxide with the local oxygen penetration region up to 1 ㎛ deep. There was no local corrosion area observed in the 12-month exposure specimen except pitting. However, in the 24-month exposure specimen, local oxygen penetration region was observed beneath the uniform oxide layer and near the pitting cavity. Al2024 showed two times thicker uniform oxide layer but much shallower local oxygen penetration region than Al1050, which appears to be related to low Si concentration. Further research is needed on the effects of Mg segregation near the tip of the oxygen penetration region.

ANODICALLY-BONDED INTERFACE OF GLASS TO ALUMINIUM

  • Takahashi, Makoto;Nishikawa, Satoru;Chen, Zheng;Ikeuchi, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.65-69
    • /
    • 2002
  • An Al film deposited on the Kovar alloy substrate was anodically-bonded to the borosilicate glass, and the bond interfaces was closely investigated by transmission electron microscopy. Al oxide was found to form a layer ~l0 nm thick at the bond interface, and fibrous structure of the same oxide was found to grow epitaxially in the glass from the oxide layer. The fibrous structure grew with the bonding time. The mechanism of the formation of this fibrous structure is proposed on the basis of the migration of Al ions under the electric field. Penetration of Al into glass beyond the interfacial Al oxide was not detected. The comparison of the amount of excess oxygen ions generated in the alkali depletion layer with that incorporated in the Al oxide suggests that the growth of the alkali-ion depletion layer is controlled by the consumption of excess oxygen to form the interfacial Al oxide.

  • PDF

DRAM Package Substrate Using Aluminum Anodization (알루미늄 양극산화를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.69-74
    • /
    • 2010
  • A new package substrate for dynamic random access memory(DRAM) devices has been developed using selective aluminum anodization. Unlike the conventional substrate structure commonly made by laminating epoxy-based core and copper clad, this substrate consists of bottom aluminum, middle anodic aluminum oxide and top copper. Anodization process on the aluminum substrate provides thick aluminum oxide used as a dielectric layer in the package substrate. Placing copper traces on the anodic aluminum oxide layer, the resulting two-layer metal structure is completed in the package substrate. Selective anodization process makes it possible to construct a fully filled via structure. Also, putting vias directly in the bonding pads and the ball pads in the substrate design, via in pad structure is applied in this work. These arrangement of via in pad and two-layer metal structure make routing easier and thus provide more design flexibility. In a substrate design, all signal lines are routed based on the transmission line scheme of finite-width coplanar waveguide or microstrip with a characteristic impedance of about $50{\Omega}$ for better signal transmission. The property and performance of anodic alumina based package substrate such as layer structure, design method, fabrication process and measurement characteristics are investigated in detail.

Improved Stability Sputtered IZO Thin Film Transistor Using Solution Processed Al2O3 Diffusion Layer (Solution-Processed Al2O3 확산층을 이용한 Sputtering IZO Thin Film Transistor의 안정성 향상)

  • Hwang, Namgyung;Lim, Yooseong;Lee, Jeong Seok;Lee, Sehyeong;Yi, Moonsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.273-277
    • /
    • 2018
  • This research introduces the sputtered IZO thin film transistor (TFT) with solution-processed $Al_2O_3$ diffusion layer. IZO is one of the most commonly used amorphous oxide semiconductor (AOS) TFT. However, most AOS TFTs have many defects that degrade performance. Especially oxygen vacancy in the active layer. In previous research, aluminum was used as a carrier suppressor by binding the oxygen vacancy and making a strong bond with oxygen atoms. In this paper, we use a solution-processed $Al_2O_3$ diffusion layer to fabricate stable IZO TFTs. A double-layer solution-processed $Al_2O_3$-sputtered IZO TFT showed better performance and stability, compared to normal sputtered IZO TFT.

Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition (ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성)

  • Song, Gen-Soo;Kim, Hyoung-Tae;Yoo, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

Superhydrophobic and Hydrophobic Anodic Aluminum Anodic Oxide Layer: A Review (초발수성 및 발수성 알루미늄 양극산화피막의 최신 연구 동향)

  • Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Hydrophobic and Superhydrophobic surfaces are promising technology for the surface finishing of metallic materials due to its water-repellency. Realization of highly water-repellent surface on aluminum and its alloys provides various functionalities for real application fields. In order to realize the hydrophobic/superhydrophobic surfaces on aluminum and its alloys, various technologies have been demonstrated. Especially, traditional anodic oxidation for aluminum has been widely employed for the morphological texturing of surfaces, which is essential to enhance the hydrophobic efficiency. De-wetting superhydrophobic surface on aluminum provides various exceptional properties, such as anti-corrosion, anti-/de-icing, anti-biofouling, drag reduction, self-cleaning and liquid separation. Nevertheless, the durability and stability of superhydrophobic surfaces still remain challenges for their actual applications in engineering systems and industry. In this review, the theoretical/experimental studies and current technical limitations on the hydrophobic and superhydrophobic surface using anodic oxidation of aluminum have been summarized.