DOI QR코드

DOI QR Code

Superhydrophobic and Hydrophobic Anodic Aluminum Anodic Oxide Layer: A Review

초발수성 및 발수성 알루미늄 양극산화피막의 최신 연구 동향

  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
  • 이정훈 (부경대학교 금속공학과)
  • Received : 2018.02.14
  • Accepted : 2018.02.26
  • Published : 2018.02.28

Abstract

Hydrophobic and Superhydrophobic surfaces are promising technology for the surface finishing of metallic materials due to its water-repellency. Realization of highly water-repellent surface on aluminum and its alloys provides various functionalities for real application fields. In order to realize the hydrophobic/superhydrophobic surfaces on aluminum and its alloys, various technologies have been demonstrated. Especially, traditional anodic oxidation for aluminum has been widely employed for the morphological texturing of surfaces, which is essential to enhance the hydrophobic efficiency. De-wetting superhydrophobic surface on aluminum provides various exceptional properties, such as anti-corrosion, anti-/de-icing, anti-biofouling, drag reduction, self-cleaning and liquid separation. Nevertheless, the durability and stability of superhydrophobic surfaces still remain challenges for their actual applications in engineering systems and industry. In this review, the theoretical/experimental studies and current technical limitations on the hydrophobic and superhydrophobic surface using anodic oxidation of aluminum have been summarized.

Keywords

References

  1. W. Barthlott, C. Neinhuis, Planta, 202 (1997) 1-8. https://doi.org/10.1007/s004250050096
  2. M. Cao, D. Guo, C. Yu, K. Li, M. Liu, L. Jiang, ACS Applied Materials & Interfaces, 8 (2015) 3615-3623.
  3. X. Feng, L. Jiang, Advanced Materials, 18 (2006) 3063-3078. https://doi.org/10.1002/adma.200501961
  4. A. Carre, K. L. Mittal, Superhydrophobic Surfaces. CRC Press: 2009.
  5. W. Lee, B. G. Park, D. H. Kim, D. J. Ahn, Y. Park, S. H. Lee, K. B. Lee, Langmuir, 26 (2009) 1412-1415.
  6. P. Roach, N. J. Shirtcliffe, M. I. Newton, Soft Matter, 4 (2008) 224-240. https://doi.org/10.1039/B712575P
  7. A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, R. E. Cohen, Proceedings of the National Academy of Sciences, 105 (2008) 18200-18205. https://doi.org/10.1073/pnas.0804872105
  8. R. Hensel, A. Finn, R. Helbig, H.-G. Braun, C. Neinhuis, W.-J. Fischer, C. Werner, Advanced Materials, 26 (2014) 2029-2033. https://doi.org/10.1002/adma.201305408
  9. T. Liu, C.-J. Kim, Science, 346 (2014).
  10. J. Ou, B. Perot, J. P. Rothstein, Physics of Fluids, 16 (2004) 4635-4643. https://doi.org/10.1063/1.1812011
  11. C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, C.-J. Kim, Physics of Fluids, 18 (2006) 087105. https://doi.org/10.1063/1.2337669
  12. C.-H. Choi, C.-J. Kim, Physical Review Letters, 96 (2006) 066001. https://doi.org/10.1103/PhysRevLett.96.066001
  13. F. Hizal, N. Rungraeng, J. Lee, S. Jun, H. J. Busscher, H. C. Van der Mei, C.-H. Choi, ACS Applied Materials & Interfaces, 9 (2017) 12118-12129. https://doi.org/10.1021/acsami.7b01322
  14. G. Bruinsma, H. Van der Mei, H. Busscher, Biomaterials, 22 (2001) 3217-3224. https://doi.org/10.1016/S0142-9612(01)00159-4
  15. C. Jeong, J. Lee, K. Sheppard, C.-H. Choi, Langmuir, 31 (2015) 11040-11050. https://doi.org/10.1021/acs.langmuir.5b02392
  16. L. Boinovich, S. Gnedenkov, D. Alpysbaeva, V. Egorkin, A. Emelyanenko, S. Sinebryukhov, A. Zaretskaya, Corrosion Science, 55 (2012) 238-245. https://doi.org/10.1016/j.corsci.2011.10.023
  17. L. J. Chen, M. Chen, H. D. Zhou, J. M. Chen, Applied Surface Science, 255 (2008) 3459-3462. https://doi.org/10.1016/j.apsusc.2008.07.122
  18. S. Farhadi, M. Farzaneh, S. Kulinich, Applied Surface Science, 257 (2011) 6264-6269. https://doi.org/10.1016/j.apsusc.2011.02.057
  19. M. A. Sarshar, C. Swarctz, S. Hunter, J. Simpson, C.-H. Choi, Colloid and Polymer Science, 291 (2013) 427-435. https://doi.org/10.1007/s00396-012-2753-4
  20. O. Parent, A. Ilinca, Cold Regions Science and Technology, 65 (2011) 88-96. https://doi.org/10.1016/j.coldregions.2010.01.005
  21. L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, Angewandte Chemie International Edition, 43 (2004) 2012-2014. https://doi.org/10.1002/anie.200353381
  22. W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Advanced Materials, 25 (2013) 2071-2076. https://doi.org/10.1002/adma.201204520
  23. N. Desbiens, I. Demachy, A. H. Fuchs, H. Kirsch-Rodeschini, M. Soulard, J. Patarin, Angewandte Chemie International Edition, 44 (2005) 5310-5313. https://doi.org/10.1002/anie.200501250
  24. R. Narhe, D. Beysens, EPL (Europhysics Letters), 75 (2006) 98. https://doi.org/10.1209/epl/i2006-10069-9
  25. N. Adam, Nature, 180 (1957) 809-810. https://doi.org/10.1038/180809a0
  26. R. N. Wenzel, Industrial & Engineering Chemistry, 28 (1936) 988-994. https://doi.org/10.1021/ie50320a024
  27. A. B. D. Cassie, S. Baxter, Transactions of the Faraday Society, 40 (1944) 546-551. https://doi.org/10.1039/tf9444000546
  28. W. Xu, C.-H. Choi, Physical Review Letters, 109 (2012) 024504. https://doi.org/10.1103/PhysRevLett.109.024504
  29. A. T. Paxson, K. K. Varanasi, Nature Communications, 4 (2013) 1492. https://doi.org/10.1038/ncomms2482
  30. R. Raj, R. Enright, Y. Zhu, S. Adera, E. N. Wang, Langmuir, 28 (2012) 15777-15788. https://doi.org/10.1021/la303070s
  31. L. Cao, T. P. Price, M. Weiss, D. Gao, Langmuir, 24 (2008) 1640-1643. https://doi.org/10.1021/la703401f
  32. L. Li, V. Breedveld, D. W. Hess, ACS Applied Materials & Interfaces, 4 (2012) 4549-4556. https://doi.org/10.1021/am301666c
  33. Y. Wang, W. Wang, L. Zhong, J. Wang, Q. Jiang, X. Guo, Applied Surface Science, 256 (2010) 3837-3840. https://doi.org/10.1016/j.apsusc.2010.01.037
  34. Y. C. Sheen, Y. C. Huang, C. S. Liao, H. Y. Chou, F. C. Chang, Journal of Polymer Science Part B: Polymer Physics, 46 (2008) 1984-1990. https://doi.org/10.1002/polb.21535
  35. A. Steele, I. Bayer, E. Loth, Nano Letters, 9 (2008) 501-505.
  36. B. P. Singh, B. K. Jena, S. Bhattacharjee, L. Besra, Surface and Coatings Technology, 232 (2013) 475-481. https://doi.org/10.1016/j.surfcoat.2013.06.004
  37. D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, K. I. Bolotin, ACS Nano, 6 (2012) 1102-1108. https://doi.org/10.1021/nn203507y
  38. K.-C. Chang, M.-H. Hsu, H.-I. Lu, M.-C. Lai, P.-J. Liu, C.-H. Hsu, W.-F. Ji, T.-L. Chuang, Y. Wei, J.-M. Yeh, Carbon, 66 (2014) 144-153. https://doi.org/10.1016/j.carbon.2013.08.052
  39. J. O. Iroh, W. Su, Electrochimica Acta, 46 (2000) 15-24. https://doi.org/10.1016/S0013-4686(00)00519-3
  40. E. Hermelin, J. Petitjean, J.-C. Lacroix, K. I. ChaneChing, J. Tanguy, P.-C. Lacaze, Chemistry of Materials, 20 (2008) 4447-4456. https://doi.org/10.1021/cm703658t
  41. T. Song, Q. Liu, J. Liu, W. Yang, R. Chen, X. Jing, K. Takahashi, J. Wang, Applied Surface Science, 355 (2015) 495-501. https://doi.org/10.1016/j.apsusc.2015.07.140
  42. Y. Yin, T. Liu, S. Chen, T. Liu, S. Cheng, Applied Surface Science, 255 (2008) 2978-2984. https://doi.org/10.1016/j.apsusc.2008.08.088
  43. T. He, Y. Wang, Y. Zhang, T. Xu, T. Liu, Corrosion Science, 51 (2009) 1757-1761. https://doi.org/10.1016/j.corsci.2009.04.027
  44. A. V. Rao, S. S. Latthe, S. A. Mahadik, C. Kappenstein, Applied Surface Science, 257 (2011) 5772-5776. https://doi.org/10.1016/j.apsusc.2011.01.099
  45. S. Zheng, J. Li, Journal of Sol-Gel Science and Technology, 54 (2010) 174-187. https://doi.org/10.1007/s10971-010-2173-1
  46. R. T. Foley, Corrosion, 42 (1986) 277-288. https://doi.org/10.5006/1.3584905
  47. G. Thompson, L. Zhang, C. Smith, P. Skeldon, Corrosion, 55 (1999) 1052-1061. https://doi.org/10.5006/1.3283942
  48. B. Yin, L. Fang, J. Hu, A. Tang, J. He, J. Mao, Surface and Interface Analysis, 44 (2012) 439-444. https://doi.org/10.1002/sia.3823
  49. D. Zang, R. Zhu, W. Zhang, J. Wu, X. Yu, Y. Zhang, Corrosion Science, 83 (2014) 86-93. https://doi.org/10.1016/j.corsci.2014.02.003
  50. Y. Huang, D. K. Sarkar, X. G. Chen, Applied Surface Science, 356 (2015) 1012-1024. https://doi.org/10.1016/j.apsusc.2015.08.166
  51. C. Zhilei, S. Maobing, W. Lida, Journal of Solid State Electrochemistry, 17 (2013) 2661-2669. https://doi.org/10.1007/s10008-013-2141-0
  52. Y. Liu, J. Liu, S. Li, Z. Han, S. Yu, L. Ren, Journal of Materials Science, 49 (2014) 1624-1629. https://doi.org/10.1007/s10853-013-7845-0
  53. L. B. Boinovich, A. M. Emelyanenko, A. D. Modestov, A. G. Domantovsky, K. A. Emelyanenko, ACS Applied Materials & Interfaces, 7 (2015) 19500-19508. https://doi.org/10.1021/acsami.5b06217
  54. B. Zhang, Y. Li, B. Hou, RSC Advances, 5 (2015) 100000-100010. https://doi.org/10.1039/C5RA21525K
  55. Y. Liu, J. Liu, S. Li, Y. Wang, Z. Han, L. Ren, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466 (2015) 125-131.
  56. A. M. Md Jani, D. Losic, N. H. Voelcker, Progress in Materials Science, 58 (2013) 636-704. https://doi.org/10.1016/j.pmatsci.2013.01.002
  57. W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gosele, Nature Nanotechnology, 3 (2008) 234-239. https://doi.org/10.1038/nnano.2008.54
  58. W. Lee, R. Ji, U. Gosele, K. Nielsch, Nature Materials, 5 (2006) 741-747. https://doi.org/10.1038/nmat1717
  59. C. Jeong, C.-H. Choi, ACS Applied Materials & Interfaces, 4 (2012) 842-848. https://doi.org/10.1021/am201514n
  60. G. Wang, S. Liu, S. Wei, Y. Liu, J. Lian, Q. Jiang, Scientific Reports, 6 (2016) 20933.
  61. J. Lee, S. Shin, Y. Jiang, C. Jeong, H. A. Stone, C.-H. Choi, Advanced Functional Materials, 27 (2017) 1606040. https://doi.org/10.1002/adfm.201606040
  62. J. Lee, Y. Kim, H. Jang, W. Chung, Surface and Coatings Technology, 243 (2014) 34-38. https://doi.org/10.1016/j.surfcoat.2012.05.071
  63. J. Lee, U. Jung, W. Kim, W. Chung, Applied Surface Science, 283 (2013) 941-946. https://doi.org/10.1016/j.apsusc.2013.07.047
  64. F. Mansfeld, M. Kendig, Journal of The Electrochemical Society, 135 (1988) 828-833. https://doi.org/10.1149/1.2095786
  65. Y. Zuo, P.-H. Zhao, J.-M. Zhao, Surface and Coatings Technology, 166 (2003) 237-242. https://doi.org/10.1016/S0257-8972(02)00779-X
  66. H. Zhang, L. Yin, S. Shi, X. Liu, Y. Wang, F. Wang, Microelectronic Engineering, 141 (2015) 238-242. https://doi.org/10.1016/j.mee.2015.03.048
  67. Z. Lu, P. Wang, D. Zhang, Corrosion Science, 91 (2015) 287-296. https://doi.org/10.1016/j.corsci.2014.11.029
  68. J. Ou, W. Hu, M. Xue, F. Wang, W. Li, ACS Applied Materials & Interfaces, 5 (2013) 3101-3107. https://doi.org/10.1021/am4000134
  69. Y. C. Jung, B. Bhushan, Journal of Microscopy, 229 (2008) 127-140. https://doi.org/10.1111/j.1365-2818.2007.01875.x
  70. D. Quere, A. Lafuma, Nature Materials, 2 (2003) 457-460. https://doi.org/10.1038/nmat924
  71. P. Wang, D. Zhang, Z. Lu, S. Sun, ACS Applied Materials & Interfaces, 8 (2016) 1120-1127. https://doi.org/10.1021/acsami.5b08452
  72. P. Vengatesh, M. A. Kulandainathan, ACS Applied Materials & Interfaces, 7 (2015) 1516-1526. https://doi.org/10.1021/am506568v